
Analytic Asymptotics
of Discrete Noiseless Channels

Master’s Thesis

Georg Böcherer

March 2, 2007

Professor : A. Lapidoth
Advisor : V. C. da Rocha Jr.

Co-Advisors: C. Pimentel, T. Koch

To my mother

Master’s Thesis Winter Semester 2006/2007

The Discrete Noiseless Channel

Georg Böcherer

Advisor: Prof. Valdemar Cardoso da Rocha Junior
Co-Advisors: Prof. Cecilio José Lins Pimentel and Tobias Koch

1 Introduction

Theorems 1 and 8, from Shannon’s 1948 classic paper [1] both deal with the capacity
of what Shannon called the discrete noiseless channel. A discrete noiseless channel is a
channel which allows the noiseless transmission of a sequence of symbols chosen from a
finite alphabet A, each symbol having a certain duration in time, possibly different for
different symbols. Furthermore, there may be restrictions on the allowed sequences of
symbols from A. Suppose A is a q-letter alphabet, and that associated with each letter
a ∈ A is a positive number τ(a) called the duration of a.

Example 1. Shannon’s telegraphy alphabet, with A = {d,D, s, S} and durations given in

the following table:

a d D s S

τ(a) 2 4 3 6

where, in Shannon’s terminology, d stands for dot, D for dash, s for letter space, and S
for word space.

A word of length k over A is a finite string of k letters from A. If a = a1a2 . . . ak is such a
word, its duration is defined to be τ(a) = τ(a1)+. . .+τ(ak). For example, 010110 is a word
of length 6 and duration 6 over the standard binary alphabet, 01221022 is a word of length
8 and duration 8 over the standard 3-ary alphabet, and dddsddddsdDsDdsDdsDDDsDdS
is a word of length 25 and duration 74 over Shannon’s telegraphy alphabet.

A language L over A is a collection of words over A. The discrete noiseless channel
associated with L, the L-channel for short, is the channel which is only allowed to transmit
sequences from L, although it transmits them without error.

What is the capacity of the L-channel? For a general language L, not much can be
said, and the usual treatment of this issue is restricted to a special class of languages, as
did Shannon. This study will consider only Shannon languages. A Shannon language is

i

defined by a directed graph whose edges are labelled with letters from the alphabet A.
The corresponding language L is then defined to be the set of words that result by reading
off the edge labels on paths of the graph. For example, if the graph consists of a single
vertex v and q self-loops at v, each labeled with a different element of A, the resulting
language consists of all possible sequences over A. Shannon gave two different definitions
for the capacity of a noiseless channel corresponding to a Shannon language L, and then
showed that the two definitions gave the same value. This common value was thereby
established unambiguously as the maximum rate, in bits per second, that information
can be transmitted over the channel. These two definitions are called the combinatorial
capacity and the probabilistic capacity [2]. If L is a Shannon language, let N(τ) denote
the total number of words in L of duration τ . The combinatorial capacity of the L-channel
is defined as

Ccomb = lim
τ→∞

1

τ
log N(τ).

Similarly, let {Xn} be a stationary discrete Markov chain defined on the labeled graph
defining L. If the entropy of {Xn} is H and the average branch duration is T , then the
information rate of {Xn}, in bits per second, is H/T . The probabilistic capacity of the
L-language is defined to be the maximum of this rate, over all possible Markov chains:

Cprob = sup
{Xn}

H

T
.

In his original paper, Shannon gave a simple algebraic method for computing Ccomb

(Theorem 1), and showed that the same value held for Cprob (Theorem 8). His proofs,
however, were considered brief and in places quite cryptic [2].

2 Tasks

The following tasks may be helpful for your work. Since it cannot be foreseen how the
project will evolve, you will not be evaluated exclusively on the fulfillment of these tasks,
but more on the creativity that you exhibit.

• A careful treatment of the case of symbols of different durations, including non-
integer durations.

• Khandekar’s proof [2] which uses the partition function technique to find the com-
binatorial capacity.

• Pimentel’s technique [3] to compute capacity by defining constraints in terms of
forbidden strings.

• Alternative derivation of McMillans’ inequality [4].

3 General Regulations

The project will be supervised by Professor Rocha and co-supervised by Professor Pimentel
and Tobias Koch. You will have to hand in a report (an original and a copy, both signed)
that is typeset in LATEX. The original as well as the copy are property of the laboratory.

There will be a mandatory introduction to the lab and its facilities where further
details and regulations are going to be explained.

ii

Dates

Beginning : Monday, September 4, 2006
End : Friday, March 2, 2007, 12:00 pm

Addresses

Prof. A. Lapidoth T. Koch
ETF E 107 ETF D 107
<lapidoth@isi.ee.ethz.ch> <tkoch@isi.ee.ethz.ch>

044/632 51 92 044/632 65 87

Zurich, August 3, 2006

Prof. Amos Lapidoth

References

[1] Claude E. Shannon. A mathematical theory of communication. Bell System Technical

Journal, 27:379–423 and 623–656, July and October 1948.

[2] A. Khandekar, R. McEliece, and E. Rodemich. The discrete noiseless channel revisited.
In Coding, Communications, and Broadcasting, Research Studies Press Ltd., pages
115–137. John Wiley & Sons, 2000.

[3] C. Pimentel and B.F. Uchoa-Filho. A combinatorial approach to finding the capacity
of the discrete noiseless channel. 49(8):2024–2028, August 2003.

[4] V.C. da Rocha Jr. Some information-theoretic aspects fo uniquely decodable codes.
In Coding, Communications, and Broadcasting, Research Studies Press Ltd., pages
39–47. John Wiley & Sons, 2000.

iii

Acknowledgement

I would like to thank Professor Amos Lapidoth and Professor Valdemar
Cardoso da Rocha Junior for the possibility to do my master’s thesis at the
Federal University of Pernambuco, Brazil.

I wish to thank Professor Valdemar Cardoso da Rocha Junior, Professor
Cecilio José Lins Pimentel, and Tobias Koch for their scientific and personal
support of my work.

I would like to thank Márcio Lima for the interesting discussions and for his
support.

Georg Böcherer

v

vi

Abstract

Of main interest in this work is the number N [w] of distinct strings of weight w that are
accepted by a discrete noiseless channel. We investigate the asymptotic behavior of N [w]
for w getting large. We show how the number sequence N [w] can precisely be represented
by a generating series. We then interpret this generating series as a generating function
of a complex argument, and we show how the asymptotic behavior of N [w] is related
to the analytic characteristics of the generating function. We generalize Pringsheim’s
Theorem and the Exponential Growth Formula to the case where the string weights w
take non-integer values. This allows us to relate the exponential behavior of N [w] to the
radius of convergence of its generating function, to the leftmost real singularity of its
generating function, and to the smallest positive pole of its generating function. We show
how the sub-exponential behavior of N [w] is determined by the main parts of the Laurent
series expansions of the generating function around its poles. Finally, we apply these
techniques to information theoretic problems. We define the capacity of a general discrete
noiseless channel, and we show how it can be calculated from the generating function. For
a general discrete noiseless channel, we prove the first part of the fundamental theorem
of discrete noiseless channels, which says that for every rate C ′ smaller than the capacity
of the considered channel, there exists a random process that generates strings accepted
by the channel at an entropy rate equal to C ′.

viii

Contents

Contents

1. Introduction 1

2. Algebraic Representation 5
2.1. Definitions . 6

2.1.1. Discrete Noiseless Channel . 6
2.1.2. Generating Series . 6

2.2. Generating Series by Basic Set Operations 7
2.2.1. Union and Intersection . 7
2.2.2. Concatenation . 8
2.2.3. Kleene Star . 9

2.3. Generating Series from a List of Forbidden Substrings 11
2.3.1. Correlation Functions . 11
2.3.2. Forbidden Substrings . 12
2.3.3. Pattern Codes . 14

2.4. Shannon’s Telegraphy Channel . 14

3. Asymptotic Analysis 17
3.1. Information-Theoretic Criteria for DNCs of Interest 17
3.2. Exponential Behavior . 20

3.2.1. Exponential Order by Radius of Convergence 21
3.2.2. Exponential Order by Leftmost Singularity 24
3.2.3. Exponential Order by Smallest Positive Pole 27

3.3. Sub-Exponential Behavior for Integer String Weights 29
3.3.1. Expansion of Rational Functions 29
3.3.2. Sub-Exponential Behavior . 31

3.4. Shannon’s Telegraphy Channel . 35
3.4.1. Exponential Order of Coefficients 35
3.4.2. Approximation of Coefficients with Arbitrary Precision 36

3.5. Combination of Two Pattern Codes . 43
3.6. Sub-Exponential Behavior for Non-Integer String Weights 45

3.6.1. Sub-Exponential Behavior for Commensurable String Weights . . . 46
3.6.2. Sub-Exponential Behavior for Incommensurable String Weights . . 46

4. Information Theoretic Aspects 53
4.1. Capacity . 53

4.1.1. Definition . 53

ix

Contents

4.1.2. Calculation . 55
4.1.3. Capacity of a DNC Represented by a Finite State Machine 56

4.2. Channel Coding . 57
4.2.1. Random Walk in a Tree . 58
4.2.2. DNC Coding Theorem . 58

4.3. Uniquely Decodable Codes . 61
4.3.1. Capacity Achieving Distribution 61
4.3.2. McMillan’s Inequality . 62

4.4. Shannon’s Telegraphy Channel . 63
4.4.1. Capacity . 63
4.4.2. Capacity Achieving Distribution 65

5. Conclusions 67

A. Notation 69

B. Mathematics 71
B.1. Complex Analysis . 71

B.1.1. Analytic Functions . 71
B.1.2. Localization of Poles . 72
B.1.3. Analyticity of zr . 72

B.2. Miscellaneous Mathematics . 74
B.2.1. Proof of Lemma 4 . 74
B.2.2. Proof of Lemma 6 . 75
B.2.3. Lower Bound of Factorial Function 77
B.2.4. Newton’s Expansion . 77

B.3. Equality of Operational and Combinatorial Capacity 79

x

List of Figures

List of Figures

1.1. A general communication system. 1

3.1. The complex logarithm and its inversion 25
3.2. First application of argument principle . 37
3.3. Second application of argument principle 41
3.4. Location of complex roots . 42
3.5. The coefficients N011[k], N0111[k], and NF [k]. 44
3.6. Plot of the coefficients . 49
3.7. Logarithmic plot of the coefficients . 50
3.8. Linear plot of the cumulated coefficients 51

4.1. Accepted strings represented by a tree . 64

xi

1 Introduction

1. Introduction

The fundamental problem in communication engineering is to reliably transmit data from
a sender to a receiver spending as least resources as possible. The data transmission is
reliable, if it is possible to recover the sent data from the received data in a satisfactory
way. For a fixed resource, how much data can be transmitted in the maximum? Claude
E. Shannon introduced in his legendary paper [1] a measure of information, which allows
us to investigate this question with mathematical rigor. The ultimate performance of
the system is equal to the result of maximizing the mutual information between the sent
data and the received data over all possible configurations of the system that use the
fixed resource only. In many cases, this maximization problem can be divided into several
independent maximization problems, depending on how we model our communication
system. A typical scenario is displayed in Figure 1.1. Since for every data we transmit
we have to spend resources, we first compress the data to be sent. In Figure 1.1, the
corresponding procedure is denoted by “source encoding”. Data compression is a wide
area in information theory, the fundamentals are discussed in [2, ch. 5] and [3, ch. 2]. The
remaining two maximization problems have to be read from the right. For given channel
specifications, we first ask the question how much data per resource can in the maximum
be reliably transferred over the channel. This questions leads to the channel capacity.
Closely related to the channel capacity is the problem how to represent the data to achieve
the capacity. In Figure 1.1, this problem is denoted by “channel encoding”. Channel
capacity and channel encoding depends highly on the channel specifications, which can be
very different for different communication problems. In wired and wireless communication,
it has turned out to be necessary to explicitly model the noise. Otherwise, the channel
models would allow reliable communication even if the system only spends an infinitesimal
small amount of resources. From an information theoretic point of view, this situation
is equivalent to a channel of infinite capacity, which clearly does not model reality in a

V W X Y V̂ŴSource

Encoder

Channel

Encoder
Channel

Channel

Decoder

Source

Decoder

Channel Specifications

Figure 1.1.: A general communication system.

1

1 Introduction

reasonable way. For an introduction to communications in additive noise see [4], and for an
introduction to communication over fading channels, which are modelled by multiplicative
noise in addition to additive noise, see [5] and [6]. In other situations, such as magnetic
recording or data storage on hard-disks, the common modelling approach is different. As
in wired or wireless communications, the physical nature of the considered storage systems
implies undesired side-effects. These can be of very different kind including inter-symbol
interference, perturbations from other communication systems, and limitations on the
maximum resolution of our system. Instead of explicitly modeling all these effects, we
formulate some constraints on how to store the data that guarantee that the undesired
effects do not affect the performance of our system significantly. A very simple example
would be the communication over one pin of the parallel-port of a computer. To guarantee
reliable communication, we use the following two constraints. First, we only allow two
symbols—a 0 represented by a voltage of 0V and a 1 represented by a voltage of 5V.
Second, we only allow the symbol to be changed 1000 times in a second. These two
constraints eliminate all undesired side-effects: if we send a 1 the receiver will almost
surely receive a 1. As long as we fulfill the constraints, it is reasonable to model the
channel without noise. It is however important to keep in mind that no physical channel
is noiseless.

In this work, we investigate the performance of discrete noiseless channels. Discrete
noiseless channels allow the error free transmission of strings of symbols fulfilling the
channel specifications. The channel specifications of a discrete noiseless channel consist
of constraints both on symbol constellations and symbol weights. If 0 and 1 are the two
allowed symbols for transmission, a constraint on the symbol constellation could for
example be “only strings with at most 4 consecutive 1s are allowed for transmission”.
Depending on the system we model, the symbol weight can for example represent the
duration in time of the symbols, the energy of the symbols or the length of the symbols
in space. A possible constraint for the symbol weights could for example be “the symbol
0 has to have the energy of 1W and the symbol 1 has to have the energy of 2W”. We
consider the symbol weight as the resource of our system. If the resource is energy, the
maximization problem of transmission is how much data per Watt can be transmitted
over the channel in the maximum.

For a general discrete noiseless channel, let N [w] denote the number of strings of weight
w that fulfill the constraints of the channel. The maximum data rate at which we can
transmit over the channel is then, under certain conditions, given by

C = lim sup
w→∞

log N [w]
w

(1.1)

and we call C the combinatorial capacity of the channel. Here and hereafter we will
denote by log x the natural logarithm. In our work, we will take a more comprehensive
look at the performance of discrete noiseless channels. Our fundamental question is

“How many strings of the weight w are accepted by the channel?”

We will answer this question with exponential and sub-exponential precision. It will turn

2

1 Introduction

out that for the determination of the combinatorial capacity, only exponential precision
is needed.

The discrete noiseless channel was first defined by Shannon in [1, ch. 1]. Shannon
considered integer valued symbol weights and allowed symbol constellations that can be
represented by finite state machines. Shannon calculated the capacity and the capacity
achieving data representation for this class of channels.

In [7], the authors call this first chapter of Shannon’s paper a “relatively unsung part
of Shannon’s classic paper” and argue that the subject of discrete noiseless channels
is only rudimentary or not at all treated in current textbooks on information theory.
However, under different names, the discrete noiseless channel has attracted a lot of
attention in the last decades. If the symbol weights are integer-valued, investigating the
behavior of the numbers N [w] from (1.1) for increasing w is equivalent to the problem of
enumerating strings that fulfill the channel constraints. Odlyzko suggests in [8] a unified
treatment of string enumerations by generating functions. In [9, ch. 6], he then uses this
approach to derive formulas for the asymptotic behavior of N [w] for w → ∞. To use
analytic methods to investigate the asymptotic behavior of string enumerations falls in
the area of analytic combinatorics. To cite the Online Journal of Analytic Combinatorics,
whose first issue appeared in 2006, “An exciting new branch of mathematics is emerging
at the intersection of analysis, combinatorics, and number theory”[10].

In the book [11], which will probably be published in 2007, the authors provide a
systematic approach called the “symbolic method” to map enumerations of strings to
generating functions and they then use complex analysis on the generating functions to
derive formulas for the asymptotic behavior of the enumerations with sub-exponential
precision. The book can be interpreted as a detailed treatment of discrete noiseless
channels with integer-valued symbol weights, however, the authors come from the areas
of computer science and algorithm theory and mention information theoretic aspects of
their results only in some examples.

In [12], the authors focus on the constraints on symbol constellations and consider
discrete noiseless channels with symbol weights equal 1 and call these channels “constraint
systems”. They dedicate a whole chapter to the derivation of the capacity of these
channels using results from matrix theory and they also provide capacity achieving data
representations.

There are two recent publications in information theory dealing with the discrete
noiseless channel. In [7], the authors focus on discrete noiseless channels which can be
represented by finite automata. They generalize the concept of generating functions
to non-integer valued symbol weights and use results from matrix theory to give a
formula for the capacity of the channel. Again using results from matrix theory, they
provide a capacity achieving data representation. In [13], the authors use combinatorial
methods to derive the generating function for discrete noiseless channels where the allowed
symbol constellations can be represented by a list of forbidden substrings. For the case of
integer-valued symbol weights, this result was independently derived in [14].

In our work, we collect and extend the upper results with a focus on non-integer valued
symbol weights. Our main contributions are the following:

3

1 Introduction

• For a general discrete noiseless channel with non-integer valued symbol weights,
we define the generating series as an algebraic representation of its combinatorial
complexity. We then present various techniques to unambiguously construct the
generating series.

• We precisely identify the asymptotic behavior of the number of strings N [w] of
weight w allowed by the channel with the analytic characteristics of its generating
function, which results from interpreting the corresponding generating series as a
function.

• We calculate the capacity C of general discrete noiseless channels and show that for
every entropy rate C ′ < C, there is a data representation which can be transmitted
at a rate of C ′ over the channel.

Our work is divided into three independent parts. In the first part, we define the
generating series of discrete noiseless channels as a formal power series. We construct
discrete noiseless channels by algebraic operations and show how these operations translate
to the generating series. Our approach stands in contrast to the matrix approach used
in [7], it can be seen in parallel with [15] or [11, ch. 1]. As alternative techniques to
unambiguously construct generating series, we represent the results from [13] and [14].

In the second part, we interpret the generating series of discrete noiseless channels as
functions and we define the complex generating function. For the number N [w] of distinct
strings of weight w accepted by some discrete noiseless channel, we show how we can
predict its asymptotic exponential behavior and its asymptotic sub-exponential behavior
from the characteristics of the complex generating function of the channel. We show this
both for discrete noiseless channels with integer valued string weights and for discrete
noiseless channels with non-integer valued string weights. This part can therefore be seen
as a generalization of the results from [11, ch. 4] to non-integer valued string weights.

In the third part, we investigate information theoretic aspects of the discrete noiseless
channel. We first show how to calculate the combinatorial capacity of discrete noiseless
channels. Inspired by [16], we start by considering discrete noiseless channels where
the set of allowed strings are generated by a uniquely decodable code. We introduce a
new proof technique, which allows us to generalize McMillan’s inequality to non-integer
valued symbol weights and to derive the capacity achieving distribution for uniquely
decodable codes. Finally, we generalize the results for uniquely decodable codes to general
discrete noiseless channels and we show that for every entropy rate C ′ smaller than the
combinatorial capacity C, there is a random process that achieves the rate C ′. Referring
to Figure 1.1, we show how the data X must look like such that it can be transmitted
over the channel at a rate of C ′. In the converse, we show that there is no random process
that allows data transmission over a discrete noiseless channel with an entropy rate C ′

larger than the combinatorial capacity C of the considered channel. The results from this
part can be seen as a generalization of the results from [7]. In contrast to other works,
we do not use matrix theory in our derivations.

4

2 Algebraic Representation

2. Algebraic Representation

We model data in general digital communication systems to be discrete both in time/space
and value. A wide range of digital applications can directly be modeled in this way. An
example of a time discrete system is the data stream from a standard audio CD where we
have 2 channels with 44 100 samples per second with each sample consisting of 16 bits.
To model the discrete nature in time/space we represent the data by strings resulting
from concatenations of symbols. The discrete nature of the values we model by taking the
symbols from a countable (possibly infinite) set. In addition, we associate a nonnegative
real weight with each symbol. This weight can represent a duration in time, a distance in
space or any other physical measure of interest.

For two sets A and B, we denote by A ∪B the union of A and B:

s ∈ A ∪B ⇔ s ∈ A or s ∈ B. (2.1)

By AB, we denote the concatenation of A and B:

s ∈ AB ⇔ ∃a, b : s = ab and a ∈ A, b ∈ B. (2.2)

Let A denote a set of possible symbols in a discrete system. The set of all possible
strings S resulting from arbitrary concatenations of symbols from A is given by

S = A? (2.3)
= ε ∪A ∪AA ∪AAA ∪ . . . (2.4)

where the symbol ? denotes the Kleene star, see [17, ch. 1, p. 23], and where ε denotes the
empty string with sε = εs = s for any string s. The set A? is the set of all concatenations
of zero or more symbols from A. In many cases however, the set of strings that actually
are used by the system of interest is only a subset of A?. This can for example result from
spectrum shaping constraints, inter symbol interference constraints or synchronization
constraints on the allowed strings. To represent these constraints, Shannon introduced
in [1] the notion of a discrete noiseless channel (DNC). His idea was the following: let
B ⊂ S = A? be the set of strings allowed by the system. We interpret the system as
a channel with an input consisting of strings s ∈ S. Whenever s ∈ B, s is transmitted
correctly (noiseless), and whenever s ∈ S \B, the string is not transmitted by the channel.
This notion is closely related to the definition of regular languages, where a string gets
processed by a finite automata that accepts the string if it is part of the language and
generates an error if it is not [17, ch. 1, p. 16].

5

2 Algebraic Representation

2.1. Definitions

2.1.1. Discrete Noiseless Channel

We formally define the DNC as follows.

Definition 1. The DNC A = (A,w) consists of a countable set A of strings and an
associated weight function w : A 7→ R⊕ with the following property: if the strings s1 and
s2 are in A, and if the concatenation s1s2 is also in A, then we have for the weight of the
concatenation s1s2:

w(s1s2) = w(s1) + w(s2). (2.5)

In addition, the empty string ε is always of weight zero, i.e., w(ε) = 0.

2.1.2. Generating Series

For a given DNC, we are interested in the number N [w] of strings that are accepted by
the DNC and that are of the same weight w. The concept of generating series allows us
to represent the number N [w] for all possible string weights w in one single algebraic
expression.

Definition 2. Let A = (A,w) represent a DNC. The generating series of A we define by

GENA (x) =
∑
s∈A

xw(s), x undefined. (2.6)

Note that the series is for now a pure algebraic concept similar to the one of formal
power series as defined for example in [18] and we do not care about the convergence of
the sum. We denote by [xw]GENA (x) the coefficient of the power xw in GENA (x). The
comparison of two generating series we perform element-wise, i.e.,

GENA (x) ≤ GENB (x) (2.7)
⇔

[xw]GENA (x) ≤ [xw]GENB (x) , ∀w ≥ 0. (2.8)

Summing up the terms corresponding to strings of the same weight yields

GENA (x) =
∑
s∈A

xw(s) (2.9)

=
∑

w∈w(A)

N [w]xw (2.10)

where we denote by w(A) the set of all possible string weights. The coefficient [xw]GENA (x)
is thus equal to the number N [w] of distinct strings of weight w accepted by the DNC A:

N [w] = [xw]GENA (x) . (2.11)

6

2 Algebraic Representation

2.2. Generating Series by Basic Set Operations

Until now, we did not assume any structure for the set of strings accepted by a DNC.
In practice, the set of strings is often defined by a short list of specifications leading
to a well-structured set of accepted strings. A large class of these specifications can be
translated into simple algebraic operations on basic DNC.

2.2.1. Union and Intersection

We start by defining the union of two DNCs.

Definition 3. Let A = (A,wA) and B = (B,wB) denote two DNCs with wA(s) = wB(s)
for all s ∈ A ∩B. We define the union of A and B by

A ∪ B = (A ∪B,wC), (2.12)

wC(s) =
{

wA(s), s ∈ A
wB(s), otherwise.

(2.13)

The union of two DNCs is a DNC that accepts strings fulfilling the specifications of
the first DNC or the specifications of the second DNC. The two DNCs are thus driven in
parallel. We next consider the intersection of two DNCs.

Definition 4. Let A = (A,wA) and B = (B,wB) denote two DNCs with wA(s) = wB(s)
for all s ∈ A ∩B. We define the intersection of A and B by

A ∩ B = (A ∩B,wA). (2.14)

The intersection of two DNCs is a DNC that accepts strings that both fulfill the
specifications of the first DNC and the specifications of the second DNC. The two DNCs
are thus driven in series. The generating series of the intersection A ∩ B follows directly
from Definition 2. For the generating series of the union A ∪ B, we have the following
lemma:

Lemma 1. Let A = (A,wA) and B = (B,wB) denote two DNCs with wA = wB on
A ∩B. We then have

i. The generating function of the union A ∪ B is given by

GENA∪B (x) = GENA (x) + GENB (x)−GENA∩B (x) . (2.15)

ii. We can upper-bound the generating function by

GENA∪B (x) ≤ GENA (x) + GENB (x) (2.16)

with equality if and only if

A ∩B = ∅. (2.17)

Proof. The lemma follows from basic set-theory. We have to consider the cardinality of
the union of two sets.

7

2 Algebraic Representation

2.2.2. Concatenation

The next operation we will consider is the concatenation of two DNCs.

Definition 5. Let A = (A,wA) and B = (B,wB) denote two DNCs with wA(s) = wB(s)
on s ∈ A ∩B. We define the concatenation of A and B by

AB = (AB,wC) (2.18)

where for any s1 ∈ A, s2 ∈ B, the weight of s = s1s2 is given by

wC(s) = wA(s1) + wB(s2). (2.19)

We interpret the concatenation of two DNCs in the following way. It is a DNC that
uses different specifications for the first and second part of the accepted strings. For the
generating series of the concatenation of two DNCs we have the following lemma.

Lemma 2. Let A = (A,wA) and B = (B,wB) denote two DNCs with wA(s) = wB(s)
for all s ∈ A ∩B. The generating series of AB can be upper-bounded by

GENAB (x) ≤ GENA (x) GENB (x) , (2.20)

with equality if and only if

|ĀB̄| =
∣∣Ā∣∣ ∣∣B̄∣∣ (2.21)

for all finite subsets Ā ⊆ A and B̄ ⊆ B. By |A|, we denote the cardinality of the set A.

Proof. The lemma follows from basic set-theory. We have to consider the cardinalities of
the involved sets.

The condition (2.21) is equivalent to the following. Every string s ∈ AB is generated
unambiguously by the concatenation of a unique symbol from A and a unique symbol
from B (No s ∈ AB is generated “twice” when concatenating A with B). The following
example illustrates the derivation of the generating series of two concatenated DNCs.

Example 1. (Generating function of concatenated DNCs). We consider the DNC A =
(A,w) with A = {s, st} and w(s) = w(t) = 1 and the DNC B = (B,w) with B = {t, ε}.
We have

GENA (x) = x + x2 (2.22)
GENB (x) = 1 + x. (2.23)

The concatenation of A and B results in the DNC AB = (D,w) with D = {s, st, stt}.
The generating series of AB is thus given by

GENAB (x) = x + x2 + x3. (2.24)

8

2 Algebraic Representation

The product of GENA (x) and GENB (x) would have led to

GENA (x) GENB (x) = (x + x2)(1 + x) (2.25)

= x + x2 + x2 + x3 (2.26)

= x + 2x2 + x3. (2.27)

C

It is important to note that the generating series of two concatenated DNCs is in
general not equal to the product of the generating series of the two DNCs. In [11], the
authors combine combinatorial classes not by concatenating the involved sets but by
building the Cartesian product of the involved sets. We denote the Cartesian product of
two sets A and B as A×B. It is defined as

A×B =
{
(a, b)

∣∣a ∈ A, b ∈ B
}
. (2.28)

As we can see, every element c ∈ A×B, can be uniquely written as a pair c = (c1, c2)
with c1 ∈ A and c2 ∈ B. As a consequence, the generating series of a Cartesian product
of two combinatorial classes is always equal to the product of the generating series of
the combinatorial classes. For the concatenation of two sets, this is not the case. For the
string st ∈ AB from the previous example, the decomposition st = c1c2 with c1 ∈ A and
c2 ∈ B is not unique. We can either write c1 = s and c2 = t or we can write c1 = st and
c2 = ε.

2.2.3. Kleene Star

The last operation we introduce is the Kleene star operation denoted by ?, which we
already defined for sets. For DNCs we define it as follows:

Definition 6. Let A = (A,w) be a DNC. The DNC A? is defined as

A? = (A?, w). (2.29)

We interpret A? as a DNC that piecewise checks the validity of the input string. If
the string is a concatenation of substrings fulfilling the specifications of A, it is valid in
A?. According to its definition, the DNC A? results from the union of concatenations of
the basic DNC A. To allow us to give a simple formula for the generating series of A?,
the concatenations have to fulfill the condition (2.21) and the unions have to fulfill the
condition (2.17). Otherwise, the resulting set is generated ambiguously, and we can not
give a formula for the generating series of A? in terms of the generating function of A. It
is not easy to check these conditions, as we illustrate in the following example.
Example 2. (Concatenations and unions in A?). Consider the DNC A = (A,w) with
A = {a, b, ab} and w(a) = w(b) = 1. The set AA is given by

AA = {aa, ab, aab, ba, bb, bab, aba, abb, abab}. (2.30)

The concatenation AA fulfills (2.21). However, A ∩ AA does not fulfill (2.17) since
A ∩AA = {ab} 6= ∅. The concatenation AAA does not fulfill condition (2.21), since the
string abab is both generated by a b ab and ab a b. C

9

2 Algebraic Representation

To avoid these complications, we impose on A the restriction that every string s ∈ A?

can be uniquely written as a concatenation of symbols from A. This coincides with the
definition of uniquely decodable codes as given in [2]. If A forms a uniquely decodable
code, then all strings s ∈ A? are uniquely generated. Otherwise, they are generated
ambiguously. Based on this observation, we have for the generating series of A? the
following lemma:

Lemma 3. Let A = (A,w) denote a DNC. The generating series of the DNC A? is then
upper-bounded by

GENA? (x) ≤
∞∑

k=0

[GENA (x)]k (2.31)

=
1

1−GENA (x)
(2.32)

with equality in (2.31) if and only if the set A forms a uniquely decodable code.

Proof. The lemma follows from the upper discussion.

To check if the set A is uniquely decodable, we can use the Sardinas-Patterson test.
The following paragraph is a verbatim quotation of the description of this test given in
Problem 24 in [2, ch. 5]:

A code is not uniquely decodable if and only if there exists a finite sequence of code
symbols which can be resolved in two different ways into sequences of codewords. That
is, a situation such as

| A1 | A2 | A3 . . . Am|
| B1 | B2 | B3 . . . Bn |

(2.33)

must occur where each Ai and each Bi is a codeword. Note that B1 must be a prefix of
A1 with some resulting “dangling suffix.” Each dangling suffix must in turn be either a
prefix of a codeword or have another codeword as prefix, resulting in another dangling
suffix. Finally, the last dangling suffix in the sequence must also be a codeword. Thus one
can set up a test for uniquely decodability (which is essentially the Sardinas-Patterson
test [19]) in the following way: construct a set S of all possible dangling suffixes. The
code is uniquely decodable if and only if S contains no codewords.

There is an important class of codes called prefix-free codes. A code is prefix-free if
no codeword is a prefix of another codeword. Prefix-free codes are uniquely decodable,
see [2]. In the same way, we can define suffix-free codes as codes where no codeword is a
suffix of another codeword. Suffix-free codes are also uniquely decodable. This can be
seen by reading prefix-free codes from behind.

For a DNC A = (A,w), we may be interested in the generating function of A? although
A does not form a uniquely decodable code. In this case, we must find an alternative
representation of the set A?. We illustrate this in the following example.

10

2 Algebraic Representation

Example 3. (Making a set uniquely decodable). Let A = (A,w) represent a DNC with
A = {0, 01, 10} and w(0) = w(1) = 1. What is the generating function of A?? We check
if A is uniquely decodable. The concatenation of 01 with 0 results in the string 010.
However, the symbol 0 ∈ A is a prefix of 010, which leads to the dangling suffix 10,
which itself is a symbol from A. Thus, A does not form a uniquely decodable code and
we cannot use Lemma 3 to derive the generating function of A?. We therefore have to
represent A? in a different way. The symbol 1 appears in strings from A? either isolated
in the form . . . 010 . . . or as a pair in the form . . . 0110 The symbol 0 appears in an
arbitrary manner. Strings of this kind are generated by B? with B = {0, 01, 011}. Note
that B forms a uniquely decodable code, since it is suffix-free. To represent A? using B
we have to consider the border conditions. With respect to the rightmost bits, the strings
in B? are equal to the strings in A?. However, all strings in B? start with 0, but there
are strings from A? that start with the symbol 10. Including these strings, we have the
following alternative representation of A?

A? = {0 ∪ 01 ∪ 10}? (2.34)
= {ε ∪ 1}{0 ∪ 01 ∪ 011}? (2.35)
= {ε ∪ 1}B?. (2.36)

Since B forms a uniquely decodable code, and since the sets {ε ∪ 1} and B? fulfill (2.21),
we have for the generating series of A?

GENA? (x) = (1 + x)
∞∑

k=0

(x + x2 + x3)k (2.37)

=
1 + x

1− (x + x2 + x3)
. (2.38)

C

2.3. Generating Series from a List of Forbidden Substrings

In many cases, the specifications of the allowed strings of a DNC consist of a finite
alphabet and a finite list of forbidden substrings. All strings generated over the alphabet
that do not contain any of the forbidden substrings are accepted by the channel. In [13]
and [14], the authors give formulas how to directly derive the generating series for this
type of DNCs. The case of non-integer valued string weights is considered in [13].

2.3.1. Correlation Functions

To derive the generating series of a DNC specified by a list of forbidden substrings, the
main tool is the correlation function of the substrings from this list. We introduce the
correlation function in a simple example.

Example 4. (Correlation function). We consider the DNC A = (A,w), where A is the set
of all binary strings that do not contain the substring 101, and where the symbol weights

11

2 Algebraic Representation

are given by w(0) = w(1). We use a result from [14] in the form of [11, Proposition 1.4]. It
states that the set of binary strings not containing a certain pattern p has the generating
series

f(x) =
c(x)

xk + (1− 2x)cp,p(x)
(2.39)

where k is the length (in bits) of p and where cp,p(x) is the correlation function representing
the correlation of p with itself. It is defined as

cp,p(x) =
k−1∑
i=0

cix
i (2.40)

with ci given by

ci = δ[p1+ip2+i · · · pk, p1p2 · · · pk−i] (2.41)

where pi denotes the ith bit (from the left) of p and where δ[a, b] = 1 if a = b and
δ[a, b] = 0 if a 6= b. In (2.41), we compare the pattern p with the pattern p shifted to the
right by i bits. This can be visualized in the following way:

i 1 0 1 ci

0 1 0 1 1
1 1 0 1 0
2 1 0 1 1

(2.42)

For the pattern p shifted to the right by i = 0, the part that overlaps with p is clearly
identical to p, i.e., 101 = 101, and we therefore have c0 = 1. For i = 1, the overlapping
parts are different, i.e., 01 6= 10, and we have c1 = 0. For i = 2, the overlapping parts
are again identical, i.e., 1 = 1, which yields c2 = 1. Thus, the correlation function is for
p = 101 given by

cp,p(x) = 1 + x2. (2.43)

The size of p in bits is k = 3, according to (2.39), the generating series of A is therefore
given by

GENA (x) =
1 + x2

x3 + (1− 2x)(1 + x2)
. (2.44)

C

2.3.2. Forbidden Substrings

We now consider the general case. Let A = (A,w) denote a DNC and let D denote a
finite alphabet. Let L denote a finite list of finite strings. Assume that the set A contains
all strings from D? that do not have substrings in L. What is the generating series of

12

2 Algebraic Representation

the DNC A? The answer is given by a formula in [13]. Here, we will only explain how to
apply this formula, and we will not discuss its derivation. Let si and sj denote two strings
from the list of forbidden substrings L. The correlation function csi,sj (x) is defined as the
generating series of the correlation between the string si and the string sj . It is difficult
to give a simple representation of the form (2.42) for the correlation between strings of
possibly non-integer valued weights. We therefore define the correlation between two
strings in a slightly different way. Assume that si can be written as si = ab and that sj

can be written as bc for a non-empty string b. We denote by E the set of all a for which
such a decomposition of si and sj exists. Basically, the substring b corresponds to the
overlapping parts in (2.42). The correlation function csi,sj (x) is then defined as

csi,sj (x) =
∑
a∈E

xw(a). (2.45)

For example, assume that the alphabet is given by D = {0, 1} with w(0) = 0.5 and
w(1) = 1 and assume that the list of forbidden strings is given by L = {s1, s2} with
s1 = 10101 and s2 = 1010. Then the correlation functions are

cs1,s1(x) = 1 + x1.5 + x cs1,s2(x) = x1.5 + x (2.46)

cs2,s1(x) = 1 + x1.5 cs2,s2(x) = 1 + x1.5. (2.47)

We define the correlation matrix T by

[T(x)]i,j = csi,sj (x). (2.48)

In our example, the correlation matrix is given by

T(x) =
(

1 + x1.5 + x x1.5 + x
1 + x1.5 1 + x1.5

)
. (2.49)

Let D(x) denote the generating series of D. In our example, D(x) is equal

D(x) = x0.5 + x. (2.50)

We define the L× L matrix Φ(x) with the diagonal elements defined as

[Φ(x)]i,i = xw(si) (2.51)

and the off-diagonal elements equal zero. The diagonal entries can be interpreted as the
generating series of the forbidden substrings from L. In our example, Φ(x) is equal

Φ(x) =
(

x4 0
0 x3

)
. (2.52)

According to [13], the generating series of the DNC A is now given by

GENA (x) =
1

1−D(x) + 1TT−1(x)Φ(x)1
(2.53)

where 1 denotes a column vector with all components equal to one.

13

2 Algebraic Representation

2.3.3. Pattern Codes

In the case where we only have one forbidden string p, (2.53) becomes

GENA (x) =
1

1−D(x) + c(x)−1xw(p)
(2.54)

=
c(x)

[1−D(x)]c(x) + xw(p)
(2.55)

where we denote the correlation function of p by c(x) = cp,p(x). A variation of the DNC
A is the DNC B = (B,w) that allows strings that end with the string p but do not
contain it elsewhere. The generating series of the DNC B is given by

GENB (x) =
xw(p)

[1−D(x)]c(x) + xw(p)
. (2.56)

For a derivation of this formula based on [14] see [11, p. 57]. A concatenation of strings
from B can be uniquely decomposed into the strings from B by looking for the substring
p. The set B therefore forms a pattern code. For a discussion of this type of codes, see
[20].

2.4. Shannon’s Telegraphy Channel

Claude Shannon started his legendary paper [1] with the consideration of a telegraphy
channel. Many authors have since then used Shannon’s telegraphy channel to illustrate
their results about discrete noiseless channels. To follow this tradition, we will illustrate
our results by applying them to the telegraphy channel. Shannon’s telegraphy channel is
a DNC and we denote it by T = (T,w). In this section, we derive the generating series of
T . The set T consists of strings over the alphabet {d,D, s, S}. The symbol s represents a
letter-space and the symbol S represents a word-space. The symbol weights are given by

w(d) = 2 w(D) = 4 w(s) = 3 w(S) = 6. (2.57)

The specifications of T are:

1. The strings cannot contain more than one consecutive s and the strings cannot
contain more than one consecutive S.

2. The symbol s cannot be followed by the symbol S and vice versa.

For example, if we encode a dot by the symbol d, a dash by the symbol D, a letter-space
by the symbol s and a word-space by the symbol S, we can transmit a Morse-message
over the channel T . We denote by Td the set of allowed strings starting with d or D and
we denote by Ts the set of allowed strings starting with s or S. We define the DNCs
Td = (Td, w) and Ts = (Ts, w). For the telegraphy channel T we then have T = Td ∪ Ts

and since Td ∩ Ts = ∅, we have, according to Lemma 1, for the generating series of T

GENT (x) = GENTd
(x) + GENTs (x) . (2.58)

14

2 Algebraic Representation

The set Td results from concatenating symbols from the set

{d, D, ds, Ds, dS, DS} (2.59)

which is uniquely decodable since it is suffix-free. We therefore know from Lemma 3 that
the set Td is uniquely generated by

Td = {d, D, ds, Ds, dS, DS}? (2.60)

and we get for the generating series of Td

GENTd
(x) =

∞∑
k=0

(
x2 + x4 + x5 + x7 + x8 + x10

)k
. (2.61)

Since Ts = {s ∪ S}Td, the generating series of Ts is given by

GENTs (x) = (x3 + x6)GENTd
(x) . (2.62)

For the generating function of the telegraphy channel T we finally get

GENT (x) = GENTd
(x) + GENTs (x) (2.63)

= GENTd
(x) + (x3 + x6)GENTd

(x) (2.64)

= (1 + x3 + x6)
∞∑

k=0

(
x2 + x4 + x5 + x7 + x8 + x10

)k (2.65)

=
1 + x3 + x6

1− x2 − x4 − x5 − x7 − x8 − x10
. (2.66)

Note that this results coincides with the generating function of Shannon’s telegraphy
channel as given in [13].

15

2 Algebraic Representation

16

3 Asymptotic Analysis

3. Asymptotic Analysis

We return to the fundamental question of our work. How many distinct strings of the
same weight are accepted by a DNC? In the last chapter, we showed that the exact
answer to this question is given by the coefficients N [w] of the generating series and that
these coefficients can be obtained by algebraic means. In many cases however, we are not
interested in the exact number N [w] of distinct strings of the same weight—we are rather
interested in the asymptotic behavior of N [w] for w getting large. In this chapter, we
will introduce the concept of generating functions and we will show that approximations
of N [w] can be derived from the generating function by analytic means. How to quantify
combinatorial structures by mathematical analysis is in detail discussed in [11]. In this
chapter, we generalize the main results from [11, ch. 4] to the case where the strings
accepted by a DNC take non-integer values.

3.1. Information-Theoretic Criteria for DNCs of Interest

We will in detail discuss information-theoretic aspects of DNCs in the next chapter. Here,
we specify the class of DNCs of interest by requiring that their combinatorial capacity is
well-defined.

According to Definition 2, the generating series of a DNC A = (A,w) is given by

GENA (x) =
∑
s∈A

xw(s). (3.1)

We order and index the weights w ∈ w(A) such that

w(A) = {wk}∞k=1 (3.2)

and

w1 < w2 < w3 < · · · . (3.3)

We can then write the generating series as

GENA (x) =
∞∑

k=1

N [wk]xwk . (3.4)

The generating series of a DNC was introduced as an algebraic representation. We did
not impose any restriction on the set of possible symbol weights {wk}∞k=1 and we did not
impose any restriction on the set of the numbers of distinct strings of the same weight
{N [wk]}∞k=1.

17

3 Asymptotic Analysis

The DNC was originally introduced as a model for a class of communication channels.
An important performance measure for a general communication channel is its capacity,
see [1]. The capacity of a DNC was in [1] and [7] defined as

C = lim sup
k→∞

log N [wk]
wk

. (3.5)

From its definition, the capacity of a DNC is of pure combinatorial nature. In [7], the
authors show that the capacity of a DNC is under certain conditions equal to the
maximum rate of information per string weight at which data can be transmitted over a
DNC. We will generalize this property in Chapter 4. We restrict our interest to DNCs
that have their capacity actually given by (3.5). This implies for the number sequence of
possible string weights {wk}∞k=1 that it increases with at most polynomial speed in the
sense that for any integer n ≥ 0

max
wk<n

k < LnK (3.6)

for some constant K > 0 and some constant L > 0. Otherwise, the density of {wk}∞k=1

increases exponentially fast and the capacity of the considered DNC is no longer given by
the combinatorial capacity as defined in (3.5). We illustrate this in the following example.

Example 5. (Too dense string weights). Let {N [wk]}∞k=1 denote the coefficients of the
generating series of some DNC. Assume N [wk] = 1 for all k ∈ N and assume

max
wk<n

k = dRne , ∀n ∈ N (3.7)

for some R > 0. According to (3.5), the combinatorial capacity of the considered DNC is
equal 0 because of log N [wk] = 0 for all k ∈ N. However, the channel accepts Rn distinct
strings of weight smaller than n. The average amount of data per string weight that we
can transmit over the channel is thus lower-bounded by log Rn/n = R which is, according
to the assumption, larger than 0.

We still assume N [wk] = 1 for all k ∈ N, but we assume for the possible string weights

max
wk<n

k < LnK (3.8)

for some positive and constant K and L. The average amount of data per string weight
that we can transmit over the channel is now upper-bounded by

log LnK

an
(3.9)

since there are at most LnK distinct strings of weight smaller or equal n and since the
average weight of strings of weight smaller or equal n increases linearly with n. For
n → ∞, (3.9) goes to zero, which is in accordance with the value we obtained for the
considered DNC by applying (3.5). C

18

3 Asymptotic Analysis

We conclude from the example that the capacity of a DNC with a set of possible string
weights {wk}∞k=1 increasing exponentially in density is not given by its capacity as defined
in (3.5).

Note 1. The authors of [21] give a definition for the capacity of DNCs that would not lead
to the problem we encountered in Example 5. However, the technique we will introduce
in the following does not apply in general when using the definition of capacity from [21].

The restriction we have on the set of the numbers of distinct strings of the same weight
{N [wk]}∞k=1 is that it increases at most exponentially in wk such that for some finite R

N [wk] < Rwk (3.10)

almost everywhere. Otherwise, the limit in (3.5) would not exist. There are combinatorial
structures that do not fulfill this restriction. We illustrate this in the following example.

Example 6. (Infinite combinatorial capacity). We start by considering the DNC A =
({0, 1}?, w) with w(0) = w(1) = 1. For the coefficients of the generating series we have
N [k] = 2k. Let s be a string in {0, 1}? of weight |s| = k. We assign labels to the k bits
forming s. We do this by assigning the integer numbers from 1 to k to the k bits in an
arbitrary order, e.g., for s = 01001 a possible assignment is

0514010312. (3.11)

The number M [k] of distinct labeled strings of weight k is now given by M [k] = 2kk!.
For the combinatorial capacity as defined in (3.5) we get

log M [k]
k

=
log 2kk!

k
(3.12)

=
k log 2

k
+

log k!
k

(3.13)

≥ log 2 +
log kke−k

k
(3.14)

≥ k log k − k log e

k
(3.15)

= log k − log e. (3.16)

where we used in (3.14) the lower bound (n/e)n for the factorial function n!. A derivation
of this bound can be found in Section B.2.3 in the appendix. The term in (3.16) goes
to infinity for k →∞. It follows that the limit in (3.5) does not exist for the considered
combinatorial structure. C

Note 2. The asymptotic behavior of the complexity of combinatorial structures as the
one presented in Example 6 is in detail discussed in [11]. The key-concepts are labelled
structures and exponential generating functions.

For the rest of our work, we will only consider DNCs that fulfill (3.6) and (3.10). This
restriction is reasonable, since in practice, we almost exclusively consider DNCs that
accept strings that result from the concatenation of symbols from a finite set. DNCs of
this kind automatically fulfill (3.6) and (3.10). We state this in the following lemma.

19

3 Asymptotic Analysis

Lemma 4. Let A = (A,w) represent a DNC with the set of accepted strings A resulting
from the concatenations of symbols from a finite set. Let

GENA (x) =
∞∑

k=1

N [wk]xk (3.17)

denote the generating series of A.

i. For any integer n ≥ 0

max
wk<n

< LnK (3.18)

for some constant K > 0 and some constant L > 0.

ii. There exist some constant R > 0 and some constant M > 0 such that

N [wk] < MRwk (3.19)

almost everywhere with respect to k.

Proof. See Appendix B.2.1.

3.2. Exponential Behavior

A first approximation of the asymptotic behavior of N [wk] can be obtained by determining
its exponential order.

Definition 7. [11, p. 230] Let {wk}∞k=1 be a strictly increasing sequence of nonnegative
real numbers. We say that a sequence of nonnegative numbers {N [wk]}∞k=1 is of exponential
order Rwk if and only if

lim sup
k→∞

N [wk]
1

wk = R. (3.20)

This is equivalent to the following: for all ε with R > ε > 0, the following two properties
hold.

i. The number N [wk] is larger or equal (R− ε)wk infinitely often (i.o.) with respect
to k:

N [wk] ≥ (R− ε)wk , i.o. (3.21)

ii. The number N [wk] is smaller or equal (R + ε)wk almost everywhere (a.e.) with
respect to k:

N [wk] ≤ (R + ε)wk , a.e. (3.22)

20

3 Asymptotic Analysis

If the number sequence {N [wk]}∞k=1 is of exponential order Rwk , we denote this by

N [wk] ./ Rwk . (3.23)

It is important to take the limit superior in the definition. In general, the limit does
not exist, as we can see in the following example:

Example 7. (Existence of the limit). Consider the DNC A = ({a, b, c}?, w) with w(a) = 1,
w(b) =

√
2, and w(c) = π. Because the numbers 1,

√
2, and π are incommensurable, the

number N [wk] of distinct strings of weight wk accepted by the DNC will always be equal
1 when wk ∈ N. However, we will show in Example 11 that the supremum supwk<w N [wk]
increases exponentially like 1.9837w. Therefore, the limit k →∞ of N [wk]1/wk does not
exist. C

In the following, we will define the generating function and the complex generating
function of a DNC and we will show how we can determine the exponential order of the
coefficients N [wk] from these functions by analytic techniques.

Note 3. We will see in the next chapter that the exponential order of the coefficients
N [wk] is equivalent to the combinatorial capacity of the considered DNC.

3.2.1. Exponential Order by Radius of Convergence

The generating series of a DNC as introduced in the last chapter is of pure algebraic
nature. We now interpret it as a function of a variable taking real values.

Definition 8. We define the generating function of a DNC A as

GA (y) = GENA (x)
∣∣
x=y

, y ∈ R. (3.24)

The exponential order of the coefficients N [wk] is related to the radius of convergence
of GA (y).

Lemma 5. Let A be a DNC with the generating function

GA (y) =
∞∑

k=1

N [wk]ywk . (3.25)

Then

N [wk] ./ R−wk (3.26)

where R denotes the radius of convergence of GA (y).

To prove this lemma, we need a property of the generating function GA (y), which
follows from the restriction (3.6) we stated for the density of the possible string weights
{wk}∞k=1. We give this property in the following lemma.

21

3 Asymptotic Analysis

Lemma 6. Assume that the strictly ordered sequence of positive real numbers {wk}∞k=1

is not too dense in the sense that for any integer n ≥ 0

max
wk<n

k ≤ LnK (3.27)

for some constant L > 0 and some constant K ≥ 0. Let ρ be a nonnegative real number.
Then the sum

∞∑
k=1

ρwk (3.28)

converges if and only if ρ < 1.

Proof. See Appendix B.2.2.

Proof of Lemma 5. We can write the generating function(3.25) as

GA (y) =
∞∑

k=1

N [wk]ywk (3.29)

=
∞∑

k=1

(
N [wk]

1
wk y

)wk

. (3.30)

We define the two sets D(y) and E(y) as

D(y) =
{
k ∈ N

∣∣N [wk]
1

wk y < 1
}

(3.31)

E(y) = N \D(y) =
{
k ∈ N

∣∣N [wk]
1

wk y ≥ 1
}

(3.32)

and write the generating function as

GA (y) =
∑

k∈D(y)

(
N [wk]

1
wk y

)wk

+
∑

k∈E(y)

(
N [wk]

1
wk y

)wk

. (3.33)

It follows from Lemma 6 that GA (y) converges if and only if the set E(y) is finite. The
number R is the radius of convergence of GA (y), therefore, for any ε with R > ε > 0,
the set E(R− ε) is finite. Since D(y) = N \E(y), the finiteness of E(R− ε) is equivalent
to k ∈ D(R− ε) a.e.:

N [wk]
1

wk (R− ε) < 1, a.e. (3.34)

We therefore have

N [wk] < (R− ε)−wk , a.e. (3.35)

which implies

N [wk] ≤ (R− ε)−wk , a.e. (3.36)

22

3 Asymptotic Analysis

For any ε with R > ε > 0, since R is the radius of convergence of GA (y), the set
E(R + ε) is infinite:

N [wk]
1

wk (R + ε) ≥ 1, i.o. (3.37)

We thus have shown that for any ε with R > ε > 0

N [wk] ≤ (R− ε)−wk , a.e. (3.38)
and (3.39)

N [wk] ≥ (R + ε)−wk , i.o. (3.40)

This is according to Definition 7 equivalent to

N [wk] ./ R−wk (3.41)

which concludes the proof.

The following example illustrates how we can use this lemma to determine the ex-
ponential order of the number of distinct strings of the same weight accepted by a
DNC.
Example 8. (Radius of convergence and exponential behavior). Let A = (A,w) be a DNC
that allows binary strings that do not contain the substring 011. Assume w(0) = w(1) = 1.
We write A = BC where B = ({1}?, w) and C = ({0 ∪ 01}?, w). The generating series of
A is then given by

GENA (x) = GENB (x) GENC (x) (3.42)

=

(∞∑
k=0

xk

)(∞∑
l=0

(x + x2)l

)
. (3.43)

For the generating function of A we get

GA (y) =

(∞∑
k=0

yk

)(∞∑
l=0

(y + y2)l

)
. (3.44)

The radius of convergence of the power series is the smallest solution of the equation

y + y2 = 1 (3.45)

which is given by

R =
−1 +

√
5

2
. (3.46)

We thus have

N [k] ./

(
−1 +

√
5

2

)−k

(3.47)

= 0.61803−k. (3.48)

C

23

3 Asymptotic Analysis

3.2.2. Exponential Order by Leftmost Singularity

We have seen in the last chapter that in many cases, we can derive a closed-form
representation of the generating series of a DNC without explicitly using its series
representation. We will show that the exponential order of the coefficients N [wk] of the
series representation can be determined directly from the closed-form representation of
the generating function. To do this, we have to go to the complex plane. Singularities of
analytic functions will play a key-role. To cite [22], “Und noch ein Geheimnis: In den
isolierten Singularitäten einer Funktion f [...] ist globale Information über f codiert.”
(“One more secret: Global informations about a function f are encoded in its isolated
singularities”). In this sense, functions from the complex plane to the complex plane
are very different from functions with a real argument. We expect the reader to be
familiar with basic concepts from complex analysis. Our reference is [22], an easy-written
introduction into complex analysis with an emphasis on topics of interest for engineers.
The course is written in German. Some definitions and identities from complex analysis we
list in Appendix B.1. Our derivations are highly inspired by [11, ch. 4], with the important
difference that we include non-integer weighted string weights in our derivations. The
most important consequence is that we have to use a generating function different from
the one used in [11]. In the case of integer valued string weights, the generating series of
a DNC can directly be evaluated in the complex plane to obtain a well-defined analytic
function of the form

GA (z) =
∞∑

k=0

N [k]zk, z ∈ C. (3.49)

This series representation can be interpreted as the Taylor series expansion of GA (z)
around 0, and as a consequence, powerful theorems such as Pringsheims’s Theorem [11]
and the Exponential Growth Formula [11] can be applied directly. However, in the case of
non-integer valued symbol weights, evaluating the generating series in C does not result in
a well-defined analytic function. Expressions of the form zr, z ∈ C and r ∈ R, are a priori
not well-defined and it is not possible to define them such that the resulting function is
analytic in 0. For a discussion of this problem see Appendix B.1.3. To circumvent this
problem, we evaluate the generating series in x = es, s ∈ C. Terms of the form xr, r ∈ R
become terms of the form ers, which are analytic in C. We can relate the substitutions
x = z and x = es to each other by defining the complex logarithm as

Log v =
{
z
∣∣ exp(z) = v,−π < ={z} ≤ π

}
. (3.50)

The function z = Log v maps the punctured complex plane C \ {0} to a horizontal stripe
with −π < ={z} ≤ π. See Figure 3.1 for an illustration.

Definition 9. We define the complex generating function of a DNC A as

GA (es) = GENA (x)
∣∣
x=es , s ∈ C. (3.51)

24

3 Asymptotic Analysis

|z| = 1

|z| = R

z

s

s = Log y

z = exp(s)

Ω

Log Ω

0Log R

ℑ{s} = π

ℑ{s} = −π

Figure 3.1.: Mapping from the punctured complex plane z ∈ C\{0} to a horizontal stripe
with −π < ={s} ≤ π.

In literature, the generating functions of combinatorial structures appear in many
forms. In [14], we find expressions of the form

∞∑
k=0

N [k]z−k (3.52)

where the minus sign is probably inspired by the Z Transform. In [11], the authors write
∞∑

k=0

N [k]zk (3.53)

and in [7] and [13], the authors chose
∞∑

k=1

N [wk]e−wks. (3.54)

We defined the complex generating function in yet another way. As stated above, the
forms (3.52) and (3.53) do not serve for our purpose since they are not well-defined
for z ∈ C. We did not use the form (3.54), since we want the coefficients to remain
nonnegative when we differentiate the complex generating function (we will need this
property in a later proof). In the form (3.54), the complex generating function does not
have this property. This can for example be seen from the first differentiation of the
summands in (3.54), which is given by

d
ds

N [k]e−wks = −wkN [k]e−wks. (3.55)

25

3 Asymptotic Analysis

Before we can show how the exponential order of the coefficients N [wk] is related to
the complex generating function, we need the following generalization of Pringsheim’s
Theorem, which can be found in its original form in [11].

Theorem 1. Let A be a DNC with the complex generating function

GA (es) =
∞∑

k=1

N [wk]ewks. (3.56)

If the region of convergence (r.o.c.) of GA (es) is determined by <{s} < S, then GA (es)
has a singularity in s = S.

Proof. Suppose in contrary that GA (es) is analytic in s = S implying that it is analytic
in a disc of radius r centered at S. We choose a number h such that 0 < h < r/3 and
consider the Taylor expansion of GA (es) around s0 = S − h:

GA (es) =
∞∑

n=0

[
GA (es0)

](n)

n!
(s− s0)n, (3.57)

=
∞∑

n=0

∞∑
k=1

N [wk]wn
kewks0

n!
(s− s0)n. (3.58)

For s = S + h, this is according to our supposition a converging double sum with positive
terms and we can reorganize it in any way we want. We thus have convergence in

GA

(
eS+h

)
=

∞∑
n=0

∞∑
k=1

N [wk]wn
kewks0

n!
(2h)n (3.59)

=
∞∑

k=1

N [wk]ewks0

∞∑
n=0

wn
k (2h)n

n!
(3.60)

=
∞∑

k=1

N [wk]ewks0ewk2h (3.61)

=
∞∑

k=1

N [wk]ewk(S+h). (3.62)

But convergence in the last line contradicts that the r.o.c. of GA (s) is strictly given by
<{s} < S.

We are now ready to state the fundamental theorem of this chapter. For DNCs
that accept strings with integer valued weights only, the corresponding theorem is the
Exponential Growth Formula as given in [11].

26

3 Asymptotic Analysis

Theorem 2. Let A be a DNC with the complex generating function

GA (es) =
∞∑

k=1

N [wk]ewks. (3.63)

If GA (es) has its leftmost real singularity in s = ln Q, then the exponential order of the
coefficients N [wk] is given by

N [wk] ./ Q−wk . (3.64)

Proof. If GA (es) has its leftmost real singularity in s = lnQ, then the r.o.c. of GA (es)
is according to Theorem 1 given by <{s} < lnQ. We write

GA (es) =
∞∑

k=1

N [wk]ewks (3.65)

≤
∞∑

k=1

|N [wk]ewks| (3.66)

=
∞∑

k=1

N [wk]|ewks| (3.67)

where we have equality in (3.67) because the coefficients N [wk] are all nonnegative, and
where we have equality in (3.66) if s is real. The complex generating function GA (es)
evaluated in s = ln y is equal to the generating function GA (y). It follows that if the
r.o.c. of GA (es) is given by <{s} < lnQ, then the radius of convergence of GA (y) is
given by R = Q. Using Lemma 5, we have for the exponential order of N [wk]

N [wk] ./ R−wk (3.68)
= Q−wk (3.69)

which concludes the proof.

3.2.3. Exponential Order by Smallest Positive Pole

The most important application of Theorem 2 we formulate in the following corollary.

Corollary 1. Suppose that the generating series of a DNC A can be written as

GENA (x) =
n1x

τ1 + n2x
τ2 + · · ·+ npx

τp

d1xν1 + d2xν2 + · · ·+ dqxνq
, τ1, . . . , τp, ν1, . . . , νq ∈ R⊕ (3.70)

for some finite p and q. The exponential order of the coefficients N [wk] is then given by

N [wk] ./ P−wk (3.71)

where P is the smallest positive pole of GA (y), which results from evaluating GENA (x)
in y = x, y ∈ R.

27

3 Asymptotic Analysis

Note 4. The corollary was already stated in [13, Theorem 1]. At an important step in
the proof, which states that the smallest positive pole of GA (y) determines the region
of convergence of the series representation of GA (y), the authors refer to [7]. It is not
clear to us if this reference applies, since it refers to a statement about the convergence
of matrix power series of the form

∞∑
k=0

Ak (3.72)

where A is a square matrix. This is different from the context considered in our work and
it is also different from the context considered in [13]. We believe that the generalization
of Pringsheim’s Theorem we gave in Theorem 1 is essential for the complete proof of
Corollary 1.

Proof of Corollary 1. If the generating series GENA (x) is of the form (3.70), the complex
generating function GA (es), which results from evaluating GENA (x) in x = es, is
meromorphic, which implies that all its singularities are poles. The substitution y = es,
for s real, is a one-to-one mapping from the real axis to the positive real axis. Therefore,
if lnQ is the leftmost real pole of GA (es), then P = Q is the smallest positive pole of
the generating function GA (y). Applying Theorem 2, we get for the exponential order of
N [wk]

N [wk] ./ Q−wk (3.73)
= P−wk (3.74)

which concludes the proof.

We illustrate the application of this corollary by using it to solve the problem from
Example 8 in a different way.

Example 9. (Smallest positive pole and exponential behavior). As in Example 8, let
A = (A,w) be a DNC that allows binary strings that do not contain the substring 011.
Assume w(0) = w(1) = 1. We know from (2.55) that the generating series of binary
strings that do not contain a certain pattern p is given by

GENA (x) =
c(x)

xl + (1− 2x)c(x)
(3.75)

where l is the weight of the pattern p and where c(x) is the autocorrelation function of p.
For p = 011 we get l = 3 and c(x) = 1. We evaluate GENA (x) in x = y, y ∈ R and get
for the generating function of A

GA (y) =
1

y3 + (1− 2y)
. (3.76)

28

3 Asymptotic Analysis

The smallest positive pole of GA (y) is given by P = 0.61803. According to Corollary 1,
we have

N [k] ./ P−k (3.77)

= 0.61803−k. (3.78)

We note that this result coincides with the result from Example 8. C

3.3. Sub-Exponential Behavior for Integer String Weights

In the last section, we have seen how we can derive the exponential order of the coefficients
N [wk] of the generating series of a DNC from the corresponding (complex) generating
function of the DNC by analytic methods. In the following, we will extend this approach
and we will show how we can derive asymptotic approximations of N [wk] with sub-
exponential precision. The simplest case is when the considered DNC allows strings
of integer valued weights only and has a generating function that is rational. We will
therefore start this section with a summary of some properties of rational functions
important to our work. A more detailed discussion of rational functions can be found in
[11].

3.3.1. Expansion of Rational Functions

A rational function f : C 7→ C is a function that can be written as

f(z) =
N(z)
D(z)

(3.79)

where N(z) and D(z) are polynomials in z. In the following, we consider rational functions
f that are analytic in zero, which is equivalent to |f(0)| < ∞. This is guaranteed by

[z0]D(z) 6= 0 (3.80)

which implies that f has no pole in 0. As in Chapter 2, [zk]D(z) denotes the coefficient
of the exponential term zk in D(z).

Note 5. If a function f(z) is analytic in zero, then it has according to Theorem 10 a
Taylor series expansion around zero given by

f(z) =
∞∑

k=0

f (k)(0)
k!

zk. (3.81)

It follows from this equation that [zk]f(z) = f (k)(0)/k!. We call the number sequence
{f (k)(0)/k!}∞k=0 the coefficients of f(z), which is short for “the coefficients of the Taylor
expansion of f(z) around zero”.

29

3 Asymptotic Analysis

Partial Fraction Expansion

Any rational function f(z) = N(z)/D(z) that is analytic in zero has a partial fraction
expansion of the form

f(z) = Q(z) +
∑
α

rα∑
r=1

cα,r

(z − α)r
(3.82)

where Q(z) is a polynomial of degree k0 = deg(N)− deg(D). We assign to α the poles
of f(z) and for each pole, and we let r take the values 1, . . . , rα where rα denotes the
multiplicity of the pole α. The coefficients cα,r take complex values. We are finally
interested in the coefficients [zk]f(z) of the expansion of f(z) around zero for large k.
The term Q(z) does not contribute to the value of [zk]f(z) for k > k0. Without loss of
generality, we can therefore assume in the following that deg(D) > deg(N). In the term
on the right-hand side of (3.82), we have for each summand

cα,r

(z − α)r
=

cα,r

(−α)r(1− z
α)r

(3.83)

=
cα,r

(−α)r

∞∑
k=0

(
k + r − 1

r − 1

)(z

α

)k
(3.84)

where equality in the last line follows from Newton’s expansion as given in Theorem 14
in the appendix. We thus have

[zk]
cα,r

(z − α)r
= cα,r(−1)r

(
k + r − 1

r − 1

)
α−k−r. (3.85)

This leads to the following theorem:

Theorem 3. [11, p. 243] (Expansion of rational functions). If f(z) is a rational function
that is analytic in zero and has poles at points α1, α2, . . . , αm, then its coefficients are a
sum of exponential polynomials. There exist m polynomials {Πj(k)}m

j=1 in k such that,
for k larger than some fixed k0,

[zk]f(z) =
m∑

j=1

Πj(k)α−k
j . (3.86)

Furthermore, the degree of Πj is equal to rj − 1 where rj is the multiplicity of the pole of
f(z) at αj.

Note 6. The partial fraction expansion is a tool frequently used in engineering. For
example, it is used to find the inverse Laplace transform of transfer functions of dynamic
systems, see [23]. In the same way, it also helps when inverting the Z transform of time
discrete signals, see [24]. The main task when performing the partial fraction expansion
is the determination of the coefficients cα,r in (3.82). This can either be done by hand
applying an appropriate algorithm or it can be done by using the built-in functions of
mathematical computer programs such as MATHEMATICA or MAPLE. Here, we will
only treat explicitly the simplest case where all poles are of multiplicity one.

30

3 Asymptotic Analysis

Laurent Series Expansion

Let f(z) = N(z)/D(z) be a rational function with deg(N) < deg(D). Equation (3.82)
then becomes

f(z) =
∑
α

rα∑
r=1

cα,r

(z − α)r
. (3.87)

For every pole α, the inner sum is equal to the main part of the Laurent series expansion of
f(z) around α, see Theorem 11. The coefficient cα,r is thus equal to the coefficient c−r given
by the formula in Theorem 11. We conclude that a rational function f(z) = N(z)/D(z)
with deg(N) < deg(D) can be written as the sum of the main parts of its Laurent series
expansions around its poles. For the calculation of the coefficient cα,1 in the case where
the pole α is of multiplicity 1, we have the following lemma.

Lemma 7. [22, p. 112]. Let f be analytic in a region Ω \ a. Denote by c−1 the coefficient
of the term 1/(z − a) in the Laurent series expansion of f(z) near a. Then

i. If f has a pole of multiplicity one in z = a, then

c−1 = lim
z→a

(z − a)f(z). (3.88)

ii. If f can be written as

f(z) =
p(z)
q(z)

(3.89)

where p and q are analytic in Ω and q has a zero of multiplicity one in z = a, then

c−1 =
p(a)
q′(a)

. (3.90)

3.3.2. Sub-Exponential Behavior

We now use the properties of rational functions to determine the sub-exponential behavior
of a general DNC A that has a generating series of the form

GENA (x) =
N(x)
D(x)

(3.91)

where N(x) and D(x) are polynomials in the indeterminate x. Since expressions of the
form

zk, z ∈ C, k ∈ N (3.92)

are well-defined and analytic in C, we can define the generating function of the DNC A
as

HA (z) = GENA (x)
∣∣
x=z

, z ∈ C. (3.93)

31

3 Asymptotic Analysis

The generating function HA (z) has a closed-form representation of the form

HA (z) =
N(z)
D(z)

(3.94)

with N(z) and D(z) being polynomials in z, and it also has a series representation of the
form

HA (z) =
∞∑

k=1

N [k]zk. (3.95)

Our goal is to determine the sub-exponential behavior of the coefficients N [k] in (3.95)
from the analytic characteristics of (3.94). Since there is only one empty string and since
every DNC accepts the empty string, we have N [0] = 1, which implies HA (0) = 1. The
rational function HA (z) is thus finite in zero, which shows that it is analytic in zero. We
remember that [zk]HA (z) = N [k]. According to Theorem 3 we thus have

N [k] =
m∑

j=1

Πj(k)α−k
j . (3.96)

Without loss of generality, we assume for the poles

P = |α1| = |α2| = · · · = |αq| < |αq+1| ≤ · · · ≤ |αm| (3.97)

and write

N [k] =
q∑

j=1

Πj(k)α−k
j + O(α−k

q+1). (3.98)

For a real function f(x), we mean by

f(x) = O
(
g(x)

)
(3.99)

that the ratio f(x)/g(x) stays bounded for x →∞, i.e., there exists some constant x0

and some K > 0 such that

|f(x)| ≤ |Kg(x)|, ∀x > x0. (3.100)

As we can see from (3.98), Theorem 3 allows us to approximate the coefficients N [k]
and characterize the error term. The dominant term consists of the exponential terms
α−k

j with |αj | = P and the sub-exponential factors Πj(k), with j = 1, . . . , q. When there
is only one pole with amount equal P , which implies q = 1 in (3.97), then this pole is
according to Corollary 1 positive and real and therefore equal P . The equation (3.98) is
then of the simple form

N [k] = θ(k)P−k + O(α−k
2), θ(k) = Π1(k). (3.101)

All examples considered in this work will have an approximation of this form. For the
exponential order we repeat the fundamental observation stated in Corollary 1.

32

3 Asymptotic Analysis

Note 7. (First principle of coefficient asymptotics, see [11, p. 215]). The location of
the dominant poles of a rational function dictates the exponential growth P−k of its
coefficients.

The error term in (3.98) is exponentially smaller than the dominant term for k →∞.
In most cases, when characterizing the asymptotic behavior of N [k], we do not need to
take into account the poles αj with j = q + 1, . . . ,m explicitly. However, these poles
have an influence on the sub-exponential factors Πj(k), j = 1, . . . , q of the dominant
exponential terms in (3.98). For generating functions with only one dominant pole we
state this observation in the following note.

Note 8. (Second principle of coefficient asymptotics, see [11, p. 215]). The nature of the
poles of a rational function determines the sub-exponential factor θ(k).

We can use the knowledge of the sub-exponential factor θ(k) to compare two DNCs
with coefficients that have the same exponential order.

Example 10. (Comparison of two DNCs). Let A = (A,w) represent a DNC that allows
binary strings that do not contain the substring 11 and let B = (B,w) represent a DNC
that allows binary strings not containing the substring 011. Assume w(0) = w(1) = 1.
The sets A and B are then given by the regular expressions

A = {ε ∪ 1}{0 ∪ 01}? and B = {1}?{0 ∪ 01}?. (3.102)

For the generating function of A we get

HA (z) =
∞∑

k=0

NA[k]zk (3.103)

= (1 + z)
∞∑

k=0

(z + z2)k (3.104)

=
1 + z

1− z − z2
(3.105)

and for the generating function of B we get

HB (z) =
∞∑

k=0

NB[k]zk (3.106)(∞∑
l=0

zl

)(∞∑
m=0

(z + z2)m

)
(3.107)

=
1

(1− z)
1

(1− z − z2)
. (3.108)

As we can see, HB (z) has in addition to the poles of HA (z) a pole in z = 1. Does the
DNC B allow more strings of the same weight than the DNC A? We find the poles

z1 = 0.61803 z2 = 1 z3 = −1.6180. (3.109)

33

3 Asymptotic Analysis

According to (3.82) we can write

HA (z) =
a1

z − z1
+

a2

z − z3
(3.110)

HB (z) =
b1

z − z1
+

b2

z − z2
+

b3

z − z3
. (3.111)

We apply (3.85) and get for the coefficients

NA[k] = −a1z
−k−1
1 − a2z

−k−1
3 (3.112)

NB[k] = −b1z
−k−1
1 − b2z

−k−1
2 − b3z

−k−1
3 . (3.113)

We see that the exponential order of NA[k] and NB[k] is determined by the smallest
positive pole, which is given by z1 = 0.61803. This is in accordance with Corollary 1. We
only take into account the dominant pole z1 and write for the coefficients

NA[k] = −a1z
−k−1
1 + O

(
z−k
3

)
(3.114)

NB[k] = −b1z
−k−1
1 + O

(
z−k
2

)
. (3.115)

To calculate the sub-exponential factors a1 and b1 we use Lemma 7. For a1 we have

a1 =
1 + z

d
dz

(1− z − z2)

∣∣∣∣∣
z=z1

(3.116)

=
1 + z1

−1− 2z1
(3.117)

= −0.72361. (3.118)

In the same way, we get for b1

b1 =
1

d
dz

(1− z)(1− z − z2)

∣∣∣∣∣
z=z1

(3.119)

=
1

−2 + 3z2
1

(3.120)

= −1.1708. (3.121)

The sub-exponential factor b1 is larger than a1 by a factor of

b1

a1
=

−1.1708
−0.72361

(3.122)

= 1.6180. (3.123)

We conclude that the asymptotic number of strings accepted by the DNC B is larger
than the number of strings accepted by the DNC A by a factor of ≈ 1.6. C

34

3 Asymptotic Analysis

The results we derived for DNCs that have integer valued symbol weights and a rational
generating function can be slightly generalized by dropping the second condition. We
know from (3.98) that the error term of our approximation of N [k] is determined by the
pole that lies closest to the origin among all poles that we did not explicitly include in our
approximation. If an error term O(R−k) is acceptable, we only consider the poles of the
generating function that lie inside the disc |z| < R. The following theorem shows that this
approach indeed leads to an approximation of the coefficients N [k] with a quantifiable
error term.

Theorem 4. [11, p. 255](Expansion of meromorphic functions). Let f(z) be a function
meromorphic for |z| ≤ R with poles at points α1, α2, . . . , αm inside the disc |z| ≤ R.
Assume further that f(z) is analytic at all points of |z| = R and at z = 0. Then there
exist m polynomials {Πj(k)}m

j=1 such that

[zk]f(z) =
m∑

j=1

Πj(k)α−k
j + O(R−k). (3.124)

Furthermore, the degree of Πj is equal to rj − 1 where rj is equal to the multiplicity of
the pole of f(z) at αj.

3.4. Shannon’s Telegraphy Channel

We continue with the example from Section 2.4. Until now, we derived the generating
series of the DNC T , which represents Shannon’s telegraphy channel. It is given by

GENT (x) =
∞∑

k=1

N [k]xk (3.125)

=
1 + x3 + x6

1− x2 − x4 − x5 − x7 − x8 − x10
. (3.126)

In this section, we will investigate the asymptotic behavior of the number of distinct
strings N [k] of weight k accepted by the DNC T . We will do this by investigating the
rational generating function HT (z) that results from evaluating GENT (x) in the complex
plane. It is given by

HT (z) = GENT (x)
∣∣
x=z

, z ∈ C (3.127)

=
1 + z3 + z6

1− z2 − z4 − z5 − z7 − z8 − z10
. (3.128)

3.4.1. Exponential Order of Coefficients

We start by determining the exponential order of the coefficients N [k]. From Corollary 1,
we know that the exponential order of N [k] is given by

N [k] ./ P−k (3.129)

35

3 Asymptotic Analysis

where P is equal to the smallest positive real pole of HT (z). We write

HT (z) =
N(z)
D(z)

. (3.130)

The pole P is thus equal to the smallest postitive real zero of D(z). We apply a simple
algorithm, called Newton’s method [25] to find P . We get

P = 0.68 827 830 840 767 . (3.131)

The exponential order of the coefficients is thus given by

N [k] ./ 0.68 827 830 840 767−k. (3.132)

3.4.2. Approximation of Coefficients with Arbitrary Precision

In the following, we will show that we can predict the values N [k] with arbitrary precision
from the expansion of HT (z) around its poles. For sake of illustration, we try to predict
N [k] from its exponential order. We guess

N [k] ≈ P−k (3.133)

where P is the smallest positive pole of the generating function HT (z) as derived above.
For k = 10, we get from an algebraic expansion of (2.66)

N [10] = 17 (3.134)

but our guess leads to

P−10 = 41.91 400 621 (3.135)

which shows that this approach would lead to a very poor approximation of N [k]. As we
learned in this chapter, better approximations can be found by expanding the function
HT (z) around its poles and using the fact that N [k] = [zk]HT (z) for HT (z) expanded
around zero. We will do this in the following.

First Approximation

For a first approximation of the asymptotic behavior of N [k], we take into account the
dominant poles only. We know from (3.98) that we can in this case write

N [k] =
q∑

j=1

Πj(k)α−k
j + O(α−k

q+1) (3.136)

where αi, i = 1, . . . , q, denote the dominant poles with |αi| = P , and where the factors
Πj(k) are polynomials in k of degree rj − 1 with rj being the multiplicity of the pole
αj . The error term O(α−k

q+1) is determined by the pole αq+1. It is equal to the pole α

36

3 Asymptotic Analysis

r = 0.9 r = 0.8

r = 0.7 r = 0.6

0

0

0

0

0

0

0

0

1

1

1

1

1

2

2

2

2

2

4

4

−1
−1

−1

−1
−2

−2

−2
−4
−4

0.5

0.5

0.5

−0.5

−0.5

1.5

real axisreal axis

im
a
g
in

a
ry

a
x
is

im
a
g
in

a
ry

a
x
is

Figure 3.2.: We determine the number and multiplicity of zeros applying the argument
principle. Plots for the denominator of the function HT (z) evaluated in
γ(t) = r exp(it), t = 0..2π for r = 0.9, r = 0.8, r = 0.7 and r = 0.6.

37

3 Asymptotic Analysis

with |α| > P that lies closest to the origin. Before we can proceed, we need to determine
the number q of dominant poles and their multiplicities. We do this by applying the
argument principle on the denominator D(z) of HT (z), see Theorem 12. We define the
curve γ(t) as

γ(t) = reit, 0 ≤ t < 2π. (3.137)

Since P ≈ 0.69, we choose for r the values r = 0.6 and r = 0.7. We see in Figure 3.2 that
the winding number is equal one for r = 0.7 and that it is equal zero for r = 0.6. Since
the zeros get counted with their multiplicities, we conclude that HT (z) has one dominant
pole and that its multiplicity is equal one. We can now use the Laurent series expansion
of HT (z) around α1 = P to derive an approximation of the coefficients N [k] of the form
(3.136). The main part of the Laurent series expansion of HT (z) around α1 is given by

A

z − α1
(3.138)

where the coefficient A is, according to Lemma 7, given by

A =
N(α1)
D′(α1)

(3.139)

=
1 + α3

1 + α6
1

−2α1 − 4α3
1 − 5α4

1 − 7α6
1 − 8α7

1 − 10α9
1

(3.140)

≈ −0.26 142 528 220 985 . (3.141)

We define (3.138) as the first approximation T1(z) of HT (z). From (3.84), we get for the
coefficients N [k] the approximation

N [k] = [zk]HT (z) (3.142)

≈ [zk]T1(z) (3.143)

= −Aα−k−1
1 (3.144)

= 0.261 425 28 220 985 · 0.68 827 830 840 767−k−1. (3.145)

As we can see in Figure 3.2, the pole α2 next closest to the origin is of multiplicity one
and its amount lies in the interval 0.9 > |α2| > 0.8. We thus can quantify the error of
T1(z) as

HT (z) = T1(z) + O(α−k
2). (3.146)

Since 0.9 < 1, we expect an absolute error that grows exponentially with k. To compare
the approximation with the correct values, we calculate the first coefficients N [k] of

38

3 Asymptotic Analysis

k 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
N1[k] 0 1 1 1 2 2 4 5 8 11 16 23 34 49 71 103
N [k] 1 0 1 1 2 2 4 5 8 10 17 22 35 47 73 101

k 30 31 32 33 34 35 50
N1[k] 27 968 40 635 59 038 85 777 124 625 181 068 49 133 689
N [k] 27 986 40 614 59 062 85 749 124 657 181 030 49 134 036

Table 3.1.: Comparison of the coefficient approximation with the correct values.

(2.66) algebraically. We have

N [k] = [zk]HT (z) (3.147)

= [zk](1 + z3 + z6)
∞∑

k=0

(
z2 + z4 + z5 + z7 + z8 + z10

)k (3.148)

= [zk](1 + z3 + z6)
b k

2
c∑

k=0

(
z2 + z4 + z5 + z7 + z8 + z10

)k
. (3.149)

The last line is a finite sum, which can easily be calculated. We approximate N [k] by

N1[k] = round
(
−Aα−k−1

1

)
(3.150)

where y = round(x) assigns to y the integer that lies closest to x. For A and α1, we use
the values from (3.145). In Table 3.1, we list the approximated coefficients N1[k] and the
correct coefficients N [k] for k = 0, ..., 15, k = 30, ..., 35 and k = 50. As we predicted, we
have an absolute error that increases with k.

Second Approximation

The approximation N1[k] is a bit smaller than the correct value when k is even and a
bit larger when k is odd. We therefore expect the pole α2, which lies next closest to the
origin, to be negative. According to Theorem 13, complex roots of polynomials with real
coefficients only appear in complex conjugated pairs. As we can see in Figure 3.2, there
is only one pole with its amount lying in the interval (0.8, 0.9). Therefore, the pole α2 is
real, and we can look for it along the real axis. We find

α2 = −0.86 274 326 605 638 . (3.151)

The main part of the Laurent series expansion of HT (z) around α2 is equal

B

z − α2
(3.152)

where B is according to Lemma 7 given by

B =
N(α2)
D′(α2)

(3.153)

= 0.18 641 508 614 227 . (3.154)

39

3 Asymptotic Analysis

k 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
N2[k] 1 0 1 1 2 2 4 5 8 10 17 22 35 47 73 101
N [k] 1 0 1 1 2 2 4 5 8 10 17 22 35 47 73 101

k 30 31 32 33 34 35 50
N2[k] 27 986 40 614 59 063 85 748 124 658 181 030 49 134 036
N [k] 27 986 40 614 59 062 85 749 124 657 181 030 49 134 036

Table 3.2.: Comparison of the new coefficient approximation with the correct values.

We define T2(z) as a second approximation of HT (z) by

T2(z) =
A

z − α1
+

B

z − α2
. (3.155)

From (3.84), we get for the coefficients N [k] the new approximation

N [k] ≈ [zk]T2(z) (3.156)

−Aα−k−1
1 −Bα−k−1

2 . (3.157)

We now can approximate N [k] by

N2[k] = round
(
−AR−k−1 −BP−k−1

)
. (3.158)

In Table 3.2, we display the first values we find for the new approximation N2[k]. Only
for k = 33, k = 34 and k = 35 the values of N2[k] differ by 1 from the correct values.
For the other k, the new approximation is correct. We note that the value for k = 50 is
correct. To check if we can expect N2[k] to be still correct for large k we again apply the
argument principle. In Figure 3.3, we display the contour of T (γ) for r = 1 and r = 0.98.
In both cases, the winding number is 4. We remember that the winding number was 2
for r = 0.9. This means that HT (z) has two poles with multiplicity 1 or one pole with
multiplicity 2 with the modulus lying in the interval (0.9, 0.98). As a consequence, N2[k]
still has an error, which will grow exponentially with k because of 0.98 < 1. Evaluating
N2[k] and N [k] in k = 75 yields

C
(2)
75 = 558 826 885 811 (3.159)

C75 = 558 826 885 813. (3.160)

As we predicted, there is still an error for large k.

Efficient Algorithm to Calculate N [k]

We now use MAPLE to find all poles with modulus smaller than 1, derive the main
part of the Laurent series expansion of HT (z) around them and add each main part to
our approximation. MAPLE finds all 10 complex poles of HT (z). We display them in
Figure 3.4. We define a new approximation T4(z) by adding the contribution of the two

40

3 Asymptotic Analysis

00

0

00

0

1

1

5

5

5

5

−5
−5

−5
−5

0.1

0.2

0.2

0.3

0.4

0.6

0.8

0.8

−0.1

−0.2

−0.2

−0.4

1.2

1.2 1.4

r = 1r = 1

r = 0.98

r = 0.98

real axisreal axis

im
a
g
in

a
ry

a
x
is

im
a
g
in

a
ry

a
x
is

Figure 3.3.: Plots for the denominator of the generating function evaluated in
γ(t) = r exp(it), t = 0 . . . 2π for r = 1 and r = 0.98.

41

3 Asymptotic Analysis

0

0

1

1

−1

−1

0.5

0.5

−0.5

−0.5
−1.5
−1.5

1.5

1.5

|z| = 1

real axis

im
a
g
in

a
ry

a
x
is

Figure 3.4.: All 10 complex roots of HT (z). Note hat there are only four roots with their
modulus being smaller than one.

42

3 Asymptotic Analysis

complex conjugated poles with modulus smaller than 1 to our last approximation T2(z).
We then have

N [k] = [zk]T4(z) + O(α−k
5), |α5| > 1 (3.161)

which leads to an approximation with an absolute error vanishing for k →∞. Thus, for
some k0, the error term will be less than 1/2 for all k > k0. We therefore approximate
N [k] by

N4[k] = round
(
[zk]T4(z)

)
. (3.162)

This provides an analytic algorithm to calculate the correct values of N [k] for k > k0.
Neglecting possible optimizations, the complexity of this algorithm is linear in k since
we have to perform k multiplications, whereas the complexity of the algebraic algorithm
given in (3.149) is exponential in k (to calculate the last term of the sum we have to
perform 6k/2 multiplications). We determine the correct value of N [500]. In MAPLE,
it takes 175.655 to determine N [500], whereas it only takes 1.812 seconds to calculate
N [500] by the analytic algorithm. Both algorithms lead to the same value for N [500].

3.5. Combination of Two Pattern Codes

An important problem in coding theory is the encoding of arbitrary integer sequences. A
possible way to solve this problem is the application of pattern codes as we introduced
in Section 2.3.3. These codes can be specified by a pattern p, which only appears in
the rightmost bits of the codewords. Among all pattern codes, codes with a pattern of
the form p = 011 · · · 1 are optimal, see [20]. Here, we will only consider the code F011

with the pattern 011 and the code F0111 with the pattern 0111. The codes could be
represented by the two DNCs (F011, w) and (F0111, w), with the weight function given by
w(0) = w(1) = 1. We can write the set F011 as

F011 = {1}?{0, 01}?{011} (3.163)

which yields for the corresponding generating function

G011 (y) =

(∞∑
k=0

yk

)(∞∑
l=0

(y + y2)l

)
y3 (3.164)

=
y3

(1− y)[1− (y + y2)]
. (3.165)

In the same way, we have for the set F0111

F0111 = {1}?{0, 01, 011}?{0111} (3.166)

43

3 Asymptotic Analysis

100

101

102

103

5 6 7 8 9 10 11 12 13 14 15 16
string weight k

n
u
m

b
er

o
f
d
is

ti
n
ct

st
ri

n
g
s

N011[k]

N0111[k]

NF [k]

Figure 3.5.: The coefficients N011[k], N0111[k], and NF [k].

and for the corresponding generating function, we get

G0111 (y) =

(∞∑
k=0

yk

)(∞∑
l=0

(y + y2 + y3)l

)
y4 (3.167)

=
y4

(1− y)[1− (y + y2 + y3)]
. (3.168)

We use Theorem 3 together with (3.85) to calculate the correct numbers of distinct
codewords of length k for the two codes. For F011, we denote this number by N011[k]
and for F0111, we denote it by N0111[k]. We display the two number sequences in Figure
3.5. The number sequence NF [k] we will define later. As we can see, N011[k] is larger
than N0111[k] for k ≤ 10. However, N0111[k] is larger than N011[k] for k > 10, and it
has a better asymptotic exponential behavior than N011[k]. Based on an idea of Márcio
Lima from the Federal University of Pernambuco in Recife, Brazil, we define a new codes,
which combines the advantages of N011[k] for small k with the advantages of N0111[k] for
large k. Let F1,011 ⊂ F011 denote the set that contains all codewords from F011 that start
with 1. It is given by

F1,011 = {1}{1}?{0, 01}?{011} (3.169)

which yields for the corresponding generating function

G1,011 (y) = yG011 (y) . (3.170)

44

3 Asymptotic Analysis

We denote by F1,0111 ⊂ F0111 the set of all codewords from F0111 that start with 1. We
have

F1,0111 = {1}{1}?{0, 01, 011}?{0111} (3.171)

and for the corresponding generating function we get

G1,0111 (y) = yG0111 (y) . (3.172)

Let F0,0111 ⊂ F0111 denote the set of all codeword from F0111 that start with 0. Since

F0,0111 ∪ F1,0111 = F0111 and F0,0111 ∩ F1,0111 = ∅ (3.173)

we have

F0,0111 = F0111 \ F1,0111. (3.174)

Because of F0,0111 ∩ F1,0111 = ∅, this implies for the corresponding generating function

G0,0111 (y) = G0111 (y)− yG0111 (y) . (3.175)

We now consider the set F = F1,011 ∪ F0,0111. Since F1,011 ∩ F0,0111 = ∅, we have for the
generating function

GF (y) = G1,011 (y) + G0,0111 (y) (3.176)
= yG011 (y) + G0111 (y)− yG0111 (y) . (3.177)

The multiplication of a generating function by y corresponds to a shift of the corresponding
coefficients by −1, e.g., if N [k] denotes the coefficients of G (y), then the coefficients M [k]
of yG (y) are given by M [k] = N [k − 1]. The coefficients NF [k] of GF (y) are therefore
given by

NF [k] = N011[k − 1] + N0111[k]−N0111[k − 1]. (3.178)

We display NF [k] together with N011[k] and N0111[k] in Figure 3.5. As we can see, the
code F combines the advantage of the code F011 for small k with the advantage of
the code F0111 for large k. In particular, NF [k] has the same exponential behavior as
N0111[k].

3.6. Sub-Exponential Behavior for Non-Integer String Weights

In this section, we will generalize the results from Section 3.3 to DNCs with string weights
taking non-integer values. Here, we have to distinguish between two cases. In the first
case, the string weights take non-integer values but are commensurable and in the second
case, the string weights are incommensurable. Whereas the first case can be treated in
almost the same way as the case of integer valued string weights, we have to use a slightly
different approach for the second case.

45

3 Asymptotic Analysis

3.6.1. Sub-Exponential Behavior for Commensurable String Weights

We consider a DNC A = (A,w) accepting strings that take non-integer valued weights.
We assume that the string weights are commensurable, which means that they can be
written as an integer multiple of the same unit. We denote this unit by a. By scaling
the weight function w of A, we can make A become a DNC with integer valued string
weights only. We do this by defining the DNC B = (A, v) with its weight function v given
by

v(s) =
w(s)

a
, ∀s ∈ A. (3.179)

The strings accepted by the DNC B are all of integer valued weights and we can apply
the results from Section 3.3 to derive approximations with sub-exponential precision
for the coefficients NB[k] of the generating series of B. The coefficients NA[wl] of the
generating series of the DNC A are related to the coefficients NB[k] in the following way

NA[wl] = NB

[wl

a

]
. (3.180)

For example, if the strings allowed by the DNC A are generated over the alphabet {0, 1}
and if the weights of these two symbols are given by w(0) = 3π/2 and w(1) = 2π, then
we use as a measure a = π/2 and we write w(0) = 3a and w(1) = 4a. The weight function
of the DNC B is then determined by v(0) = 3 and v(1) = 4, which implies that all strings
accepted by B will take integer valued weights only.

3.6.2. Sub-Exponential Behavior for Incommensurable String Weights

We finally consider the general case of DNCs with accepted strings possibly taking
incommensurable weights. As in the case of integer valued string weights and in the
case of commensurable string weights, we are interested in informations about the sub-
exponential behavior of the coefficients of the generating series. Since the string weights
are incommensurable, the DNCs we will consider here cannot be transformed into DNCs
with integer valued string weights. We will proceed in the following way. First, we will give
an alternative approach how to treat the case of integer valued string weights. Second,
we will show by an example that this approach also allows to derive useful informations
for the case of incommensurable string weights.

Alternative Expansions in the Case of Integer Valued String Weights

For a DNC A with integer valued string weights, we used a complex generating function
of the form

HA (x) =
∞∑

k=0

N [k]zk, z ∈ C. (3.181)

46

3 Asymptotic Analysis

Although not necessary, we could also use the complex generating function we had to
introduce for non-integer symbol weights, which is given by

GA (es) =
∞∑

k=0

N [k]eks, s ∈ C. (3.182)

Since GA (es) can be derived from HA (z) by the substitution z = es, we can transform by
substitution the identities we found in Section 3.3 for HA (z) into identities for GA (es).
We summarize this in the following lemma. In parenthesis, we give the corresponding
concept for HA (z). For a better understanding of the substitution, we refer to Figure 3.1.

Lemma 8. For a DNC A with integer-valued symbol weights, the following holds.

i. (Partial fraction expansion) If the generating function HA (z) is rational, then the
generating function GA (es) has an expansion of the form

GA (es) = Q(es) +
∑
α

rα∑
r=1

cα,r

(es − eα)r
. (3.183)

ii. (Newton expansion) For the summands of the inner sum of (3.183) we have

[eks]
cα,r

(es − eα)r
= cα,r(−1)r

(
k + r − 1

r − 1

)
e−(k+r)α. (3.184)

iii. (Expansion of meromorphic functions) Assume that GA (es) is meromorphic for
<{s} ≤ R and assume that GA (es) is analytic in all points <{s} = R. Let
α1, . . . , αm denote the poles of GA (es) in <{s} < R and −π < ={s} ≤ π. Then

[eks]GA (es) =
m∑

j=1

Πj(k)e−kαj + O(e−kR) (3.185)

where the factors Πj(k) are polynomials in k. The degree of the polynomial Πj(k)
is equal to rj − 1 where rj is equal to the multiplicity of the pole αj.

iv. (Coefficients of Laurent series expansion) If a pole α is of multiplicity r = 1, then
the corresponding coefficient cα,1 in (3.183) is given by

cα,1 = lim
s→α

(es − eα)GA (es) . (3.186)

Proof. The lemma follows from substituting z by exp(s) in the corresponding identities
for the generating function HA (z).

47

3 Asymptotic Analysis

Sub-Exponential Behavior of DNC with Incommensurable String Weights

We now use the following approach. The calculations which lead to the identities in Lemma
8 are also well-defined for generating functions with incommensurable string weights.
Without investigating if equality holds in (3.183), we use in the following example the
identities given in Lemma 8 to investigate the sub-exponential behavior of the coefficients
of the complex generating function of a DNC with incommensurable string weights.
We define an approximation of the coefficients and compare it with the correct values
obtained from an algebraic expansion of the corresponding generating series.

Example 11. (DNC with incommensurable symbol weights). We consider the DNC A =
(A?, w) with

A = {a, b, c} (3.187)

and

w(a) = 1 w(b) =
√

2 w(c) = π. (3.188)

The generating series of A is given by

GENA (x) =
∞∑

k=1

N [wk]xwk (3.189)

=
∞∑
l=0

(x + x
√

2 + xπ)l (3.190)

=
1

1− (x + x
√

2 + xπ)
. (3.191)

The weights of the symbols from A are pairwise incommensurable. This means that we
cannot make the symbol weights become integer-valued by an appropriate scaling. If the
symbol weights were rational numbers, this would be possible. Our goal is to make a
statement about the sub-exponential asymptotic behavior of N [wk] anyhow. We will do
this by applying the techniques indicated in Lemma 8. Substituting x in (3.191) by es,
s ∈ C, we get for the complex generating function of A

GA (es) =
1

1− (es + e
√

2s + eπs)
. (3.192)

For the poles of GA (es) in −π < ={s} ≤ π, we find

p1 = −0.68493 p2 ≈ 0.42 + 1.76i p3 ≈ 0.42− 1.76i. (3.193)

Since p1 is the leftmost real singularity of GA (es), the exponential order of N [wk] is
according to Theorem 2 given by

N [wk] ./ e−wkp1 (3.194)
= 0.50412−wk . (3.195)

48

3 Asymptotic Analysis

0
0 1 2 3 4 5 6 7 8 9 10

20

40

60

80

100

120

N1[n]

N [wk]

N0[n]

string weight w

n
u
m

b
er

o
f
d
is

ti
n
ct

st
ri

n
g
s

Figure 3.6.: Plot of the coefficients N0[n], N1[n] and N [wk].

Because the symbols are incommensurable, the set of possible string weights {wk}∞k=1

consists of values spread over the nonnegative real axis, see the plot of N [wk] in Figure
3.6 for an illustration. We will later define the coefficients N0[n] and N1[n], which are
also displayed in the same figure. The values of N [wk] were obtained by an algebraic
expansion of GENA (x). In particular, for wk ∈ N, the number of strings allowed by A
will always be N [wk] = 1 since only concatenations of the symbol a result in strings of
integer valued weight. Therefore, the number of strings of a specific weight wk given by
N [wk] does not bare much information about the performance of the considered DNC.
In addition, the determination of the set {wk}∞k=1 is of exponential complexity. We solve
this problem by approximating GA (es) by a partial fraction expansion as indicated in
(3.183) in Lemma 8. Note that we only showed equality in (3.183) for integer-valued
symbol weights. We denote the approximation by FA (es). It is given by

FA (es) =
a1

es − ep1
+

a2

es − ep2
+

a3

es − ep3
. (3.196)

We use (3.184) in (3.183) to expand FA (z). For the coefficients we get

[zks]FA (z) = −a1e
−(k+1)p1 − a2e

−(k+1)p2 − a3e
−(k+1)p3 . (3.197)

We define two approximations for the coefficients. For the first approximation we simply
use the exponential behavior of the coefficients [zks]FA (z) and define

N0[k] = e−kp1 . (3.198)

The second approximation we base on (3.197). Since <{p2} > 0 and <{p3} > 0, the
contribution of these two poles will vanish exponentially fast for k →∞. We therefore

49

3 Asymptotic Analysis

100

101

102

103

0 1 2 3 4 5 6 7 8 9 10

N1[n]

N [wk]

N0[n]

string weight w

n
u
m

b
er

o
f
d
is

ti
n
ct

st
ri

n
g
s

Figure 3.7.: Logarithmic plot of the coefficients N0[n], N1[n] and N [wk].

only take into account the contribution of p1 and define the second approximation of the
coefficients as

N1[k] = −a1e
−(k+1)p1 . (3.199)

For the sub-exponential factor a1 we have from (3.186)

a1 = lim
s→p1

(es − ep1)
1

1− (es + e
√

2s + eπs)
(3.200)

= lim
s→p1

es

−(es +
√

2e
√

2s + πeπz)
(3.201)

= −0.35849. (3.202)

How are the approximations N0[n] and N1[n] of the coefficients of HA (z) related to
the coefficients N [wk] of GA (es)? The plots of N0[n], N1[n] and N [wk] in Figure 3.6
look quite different. The approximations N0[n] and N1[n] take nonzero values only in
n ∈ N but grow much faster than N [wk]. It is not clear from Figure 3.6 which one of the
approximations N0[n] and N1[n] describes N [wk] in a better way and it is also not clear
if the exponential behavior of the approximations is the same as the exponential behavior
of N [wk]. We draw a logarithmic plot to investigate the latter question. The result is
displayed in Figure 3.7. Although N [wk] is oscillating, the supremum S[w] defined as

S[w] = sup
{
N [wk]

∣∣wk ≤ w
}

(3.203)

is growing approximately with the same rate as N0[n] and N1[n]. This gives a good
illustration of what is meant by the exponential order, which is defined by a limit superior.

50

3 Asymptotic Analysis

0
1 2 3 4 5 6 7 8 9 10

200

400

600

800

950

∑

n≤w

N1[n]

∑

wk≤w

N [wk]

∑

n≤w

N0[n]

string weight w

cu
m

u
la

te
d

n
u
m

b
er

o
f
d
is

ti
n
ct

st
ri

n
g
s

Figure 3.8.: Linear plot of the cumulated coefficients N0[n], N1[n] and N [wk].

The growths of the number sequences N0[n], N1[n] and S[w] still differ by a factor. The
explanation of this is the following: the coefficients N [wk] take nonzero values spread
over the real axis whereas the coefficients N0[n] and N1[n] only take nonzero values in
n ∈ N. What is spread over the real axis in the case of N [wk] is cumulated on the integer
numbers in the case of N0[n] and N1[n]. We therefore consider the cumulated coefficients
given by ∑

wk≤w

N [wk],
∑
n≤w

N0[n] and
∑
n≤w

N [n]. (3.204)

The plot of the cumulated coefficients can be found in Figure 3.8. The cumulation of the
approximation N0[n] is a bit to large, which could be expected since we did not take care
about the sub-exponential factor when defining N0[n]. We did so when defining N1[n]
and the cumulation of N1[n] perfectly follows the cumulation of N [wk]. We conclude that
for DNCs with strings taking incommensurable weights, we can predict the cumulated
number of distinct strings (the number of distinct strings of weight w or smaller that are
accepted by the channel) with sub-exponential precision. C

51

3 Asymptotic Analysis

52

4 Information Theoretic Aspects

4. Information Theoretic Aspects

In this final chapter of our work, we will discuss information theoretic aspects of DNCs.
Our objective is to relate the capacity of a DNC to the maximum rate of information per
string weight at which strings generated by a random source can be transmitted over
the DNC. We will proceed in the following way: first, we will define the capacity C of
DNCs. We will then prove for general DNCs that every rate C ′ smaller than the capacity
is achievable. For uniquely decodable codes, we will define a capacity achieving random
source.

4.1. Capacity

4.1.1. Definition

For sake of illustration, we interpret in the following DNCs as communication channels,
and we interpret the weights associated with the strings allowed by a channel as durations
in time. Anyhow, our discussion applies in the same way when the considered DNC
represents a storage system our any other system of interest.

We ask the following question:

“If we can use a channel for a time t, how much information can be transmitted
over the channel in the maximum?”

Following Shannon, we mean by information the logarithm of the number of choices
we have when we use the channel. We interpret the time t at our disposal as follows:
we can use the channel for any time w with 0 ≤ w ≤ t. However, we can only use it
once. We denote by when the channel is idle. For example, let DNC B = (B, v) with
B = {0, 1}? and v(0) = v(1) = 1 represent a channel of interest. Assume further that
we can use this channel for a time t = 6. Then 01100, 100, and 01 represent valid
channel usages, but 0 1 does not represent a valid channel usage. We do not differ
between 100 and 100 .

For a general DNC A = (A,w), let {wk}∞k=1 with w1 < w2 < · · · denote the set of
possible string lengths. The number of choices we have for the channel usage is then
given by ∑

wk≤t

N [wk] =
∑

wk≤wl

N [wk] (4.1)

=
∑
k≤l

N [wk] (4.2)

53

4 Information Theoretic Aspects

where N [wk] is equal to the number of distinct strings of length wk that are accepted by
the channel, and where wl is defined as

wl = max
wk≤t

wk. (4.3)

To avoid mathematical confusions in the following, we will use wl rather than t to measure
the time we have the channel at our disposal. The maximum information I(wl) that can
be transmitted over the channel in the time wl is given by

I(wl) = log

∑
k≤l

N [wk]

 . (4.4)

This formula tells us exactly how much information we can transmit over the channel in
the maximum when we use it for a time equal to or smaller than wl.

A more global measure of the channel performance is the ratio of information per
channel usage time, which is given by I(wl)/wl for wl →∞.

Definition 10. The operational capacity Cop of a DNC A we define as

Cop = lim
l→∞

log

∑
k≤l

N [wk]


wl

. (4.5)

where N [wk] denotes the number of distinct strings of weight wk that are accepted by A.

In [7], the authors gave following Shannon a different definition for the capacity of a
DNC:

Definition 11. The combinatorial capacity Ccomb of a DNC A is defined as

Ccomb = lim sup
k→∞

log N [wk]
wk

(4.6)

where N [wk] denotes the number of distinct strings of weight wk that are accepted by A.

Both definitions lead to the same value for the capacity of a DNC. We state this in the
following Theorem:

Theorem 5. The combinatorial capacity Ccomb of a DNC A is equal to the operational
capacity Cop of A and both are given by

Cop = Ccomb = log Q (4.7)

where Qwk is the exponential order of N [wk], which denotes the number of distinct strings
of weight wk that are accepted by A.

Proof. For a proof, see Appendix B.3.

In the following, we will simply speak of the capacity C of a DNC, but we keep in
mind that the capacity of a DNC has an operational interpretation.

54

4 Information Theoretic Aspects

4.1.2. Calculation

Theorem 5 allows us to use the results we obtained in Section 3.2 for the exponential
behavior of N [wk] to calculate the capacity of a DNC. For completeness, we will express
Lemma 5 and Corollary 1 in terms of channel capacity.

Theorem 6. (See Lemma 5). Let A represent a DNC with the generating function
GA (y) given by

GA (y) =
∞∑

k=1

N [wk]ywk . (4.8)

The capacity of A is then given by

C = − log R (4.9)

where R is the radius of convergence of GA (y).

Theorem 7. (See Corollary 1). Suppose that the generating function of a DNC A can
be written as

GA (y) =
n1y

τ1 + n2y
τ2 + · · ·+ npy

τp

d1yν1 + d2yν2 + · · ·+ dqyνq
, τ1, . . . , τp, ν1, . . . , νq ∈ R⊕ (4.10)

for some finite positive integers p and q. The capacity of A is then given by

C = − log P (4.11)

where P is the smallest positive pole of GA (y).

When calculating the capacity of a DNC that results from combining two DNCs by
union or concatenation, we have the following interesting properties.

Lemma 9. Let A and B represent two DNCs with the capacities CA and CB respectively.
Then

i. The capacity of the DNC A ∪ B is given by

C = max {CA, CB} . (4.12)

ii. The capacity of the DNC AB is given by

C = max {CA, CB} . (4.13)

Proof. i. Without loss of generality, we assume CA ≥ CB. For the generating function of
A ∪ B we have from Lemma 1

GA (y) ≤ GA∪B (y) ≤ GA (y) + GB (y) . (4.14)

55

4 Information Theoretic Aspects

From Lemma 5, we know that the capacity of the DNC A∪B is determined by the radius
of convergence R of the generating function GA∪B (y). But we know from (4.14) that R
is both upper-bounded and lower-bounded by the radius of convergence of GA (y). We
therefore have C = CA.

ii. The proof of the second part of the lemma is almost identical to the proof of the
first part, with the only difference that we use from Lemma 2 the bounds

GA (y) ≤ GAB (y) ≤ GA (y) GB (y) (4.15)

for the generating function of AB.

Lemma 9 has an interesting consequence. Let A = (A,w) and B = (B,w) denote two
DNCs. Even if A ∩B 6= ∅, we have

GA∪B (y) =c GA (y) + GB (y) (4.16)

where =c denotes equality with respect to capacity. This stands in contrast to condition
(2.17) in Lemma 1. In the same way, we have

GAB (y) =c GA (y) GB (y) (4.17)

even if we have
∣∣ĀB̄

∣∣ 6= ∣∣Ā∣∣ ∣∣B̄∣∣ for some finite subsets Ā ⊆ A and B̄ ⊆ B. This stands in
contrast to condition (2.21) in Lemma 2.

4.1.3. Capacity of a DNC Represented by a Finite State Machine

As an application, we calculate the capacity of a DNC A = (A,w) where A is the set
of strings we obtain by reading of the labels of branches in some finite state machine
(FSM). Let the FSM contain L states. Let Ai,j denote the set of paths from state i to
state j. The generating function of the DNC Ai,j = (Ai,j , w) is then given by

GAi,j (y) =

[∞∑
k=0

P k(y)

]
i,j

(4.18)

=
{

[I − P (y)]−1
}

i,j
(4.19)

where we implicitly assumed that the matrix I − P (y) is invertible. The (i, j)th entry of
the L× L matrix P (y) is the generating function of the set of strings that result from
going from state i to state j in one step. For example, if there are two branches from
state 1 to state 2, one of weight 2 and one of weight π, then

[P (y)]1,2 = y2 + yπ. (4.20)

Since

A =
⋃
i,j

Ai,j (4.21)

56

4 Information Theoretic Aspects

where the union is over i, j = 1, . . . , L, we have for the generating function of A

GA (y) = GS
i,j
Ai,j

(y) (4.22)

=c

∑
i,j

GAi,j (y) (4.23)

=
∑
i,j

{
[I − P (y)]−1

}
i,j

(4.24)

where equality with respect to capacity in (4.23) follows from Lemma 9. The capacity C
of the DNC A is therefore given by

C = − log P (4.25)

where P is according to Theorem 7 the smallest positive pole of (4.24). Note that we did
not use advanced results from matrix theory in our derivation. For the case of integer
valued symbol weights, a similar technique is used in [11, Section V.6]. The authors
call the matrix P (y) the transfer matrix. Normally, the calculation of the capacity of
a DNC represented by a FSM is based on matrix theory and the application of the
Perron-Frobenius Theorem. In [12, Chapter 3], the authors discuss in detail the derivation
of the capacity of DNCs represented by FSMs. However, the symbols they assign to
the branches are all of weight 1. As a consequence, they do need to use the concept of
generating functions in their derivations. The authors of [7] derive the capacity for the
general case directly from the matrix series

Q(y) =
∞∑

k=0

P k(y). (4.26)

By using arguments from matrix theory, they show that

C = − log y0 (4.27)

where y0 is the smallest positive real solution of the equation

det[I − P (y)] = 0. (4.28)

4.2. Channel Coding

In the previous section, we asked for the choices we have to transmit data over a DNC.
This led to the notion of the capacity of a DNC, i.e., how much information per string
weight we can transmit over the DNC in the maximum. Now, we actually want to
transmit data over the channel. We thus consider a random source X that generates
strings accepted by the channel. The maximum rate of information per symbol weight
that is generated by a random source is given by its entropy rate. Our objective is to
relate the maximum entropy rate of X to the capacity of the channel.

57

4 Information Theoretic Aspects

4.2.1. Random Walk in a Tree

What is the entropy rate of a random process generating strings accepted by a general
DNC A = (A,w)? To answer this question, we represent the set A by a tree T . If s, t ∈ A
are atomic (they do not result from concatenations of other strings in A), and st ∈ A,
then s and t are branches in T , there is a node between the branch s and the branch
t, and st is a path in T . We denote by start(s) the node where the branch s starts
and we denote by end(s) the node where the branch s ends. We consider a random
process generating a walk down the tree starting at the root of the tree. Conditioned on
the current node, we assign probabilities to the branches below the current node. An
observation of the random process results in the next branch we take in our walk. We
define the entropy rate of the walk as follows:

Definition 12. We consider the DNC A = (A,w) and represent the set of accepted
strings A by a tree. Let the random process X = {Xl}∞l=1 generate a random walk down
the tree starting from its root. We define the entropy rate H̄(X) as

H̄(X) = lim sup
n→∞

H(X1, X2, . . . , Xn)
Wn

(4.29)

where Wn is the average weight of all paths that start at the root and consist of n
branches.

4.2.2. DNC Coding Theorem

We can now state the fundamental theorem of the DNC.

Theorem 8. Let A represent a DNC with capacity C. For every rate C ′ < C, there
exists a random process X of entropy rate H̄(X) = C ′ that generates strings accepted
by the DNC A. Conversely, if H̄(X) > C, then the strings generated by X cannot be
transmitted over the DNC A.

This theorem was first stated by Shannon in [1]. In [7], it was proved for DNCs with
non-integer valued string weights that can be represented by a FSM. In the following,
we will prove that every rate smaller than the capacity is achievable. We will not prove
the converse rigorously, but we refer to our discussion of the operational meaning of the
capacity in Section 4.1, which makes it reasonable to assume that the converse holds. To
prove the first part of Theorem 8, we first show that it holds for a special class of DNCs.

Lemma 10. Let A = (A,w) represent a DNC with capacity C and let A be represented
by a tree. Let X = {Xl}∞l=1 denote a random walk down the tree with the probabilities

P
[
Xl+1 = t

∣∣end(Xl) = start(t)
]

= e−w(t)C . (4.30)

We assume that these probabilities define a distribution, i.e., that probabilities assigned to
branches that start at the same node sum up to 1. Then the entropy rate H̄(X) is equal
C.

58

4 Information Theoretic Aspects

Proof. Let s = s1s2 · · · sn denote a path that starts at the root and consists of n branches.
The probability of (X1, . . . , Xn) = s is given by

p(s) = p(s1)p(s2|s1)p(s3|s1s2) · · · p(sn|s1 · · · sn−1) (4.31)

= e−w(s1)Ce−w(s2)C · · · e−w(sn)C (4.32)

= e−[w(s1)+w(s2)+···+w(sn)]C (4.33)

= e−w(s)C . (4.34)

Assume that there are m paths that start at the root and consist of n branches. We
denote these paths by s(1), s(2), . . . , s(m) respectively. We then have

H(X1, X2, . . . , Xn)
Wn

=
−

m∑
i=1

p(s(i)) log p(s(i))

m∑
i=1

p(s(i))w(s(i))
(4.35)

=
−

m∑
i=1

e−w(s(i))C log e−w(s(i))C

m∑
i=1

e−w(s(i))Cw(s(i))
(4.36)

= C

m∑
i=1

e−w(s(i))Cw(s(i))

m∑
i=1

e−w(s(i))Cw(s(i))
(4.37)

= C. (4.38)

We thus have

H̄(X) = lim
n→∞

H(X1, X2, . . . , Xn)
Wn

(4.39)

= C (4.40)

which concludes the proof.

We are now ready to prove the first part of Theorem 8. The only difference to the
Lemma 10 is that we do no longer assume a priori that the probabilities of branches that
start at the same node sum up to 1.

Proof of the first part of Theorem 8. Let A = (A,w) denote a general DNC. As in the
proof of Lemma 10, we represent the set A by a tree. To every branch s, we assign the
probability

P
[
Xl+1 = s

∣∣end(Xl) = start(s)
]

= e−w(s)C′
. (4.41)

59

4 Information Theoretic Aspects

For branches starting at the same node, we investigate the sum of their probabilities,
which is given by ∑

s : end(Xl)=start(s)

P
[
s
∣∣Xl

]
. (4.42)

There are three possible scenarios:

1. The sum is equal 1. In this case we leave the probabilities unchanged.

2. The sum is larger than 1. We have two possibilities to correct this:

• We successively delete branches (including the whole subtrees below them)
from the tree as long as the sum remains larger or equal 1.

• We change the value C ′ in the formula for the probabilities of the current
branches to some C̄ with C ′ < C̄ ≤ C.

If we cannot make the sum equal 1 by these two techniques, we consider the
branches concatenated with their sub-branches as the new branches starting at
the current node. We continue with this until a depth d1 where we will succeed to
make the sum equal 1.

3. The sum is smaller than 1. As in scenario 2., we concatenate the sub-branches to
the branches until a depth d2 where the sum gets larger than 1.

To guarantee that this algorithm works, d1 and d2 have to be bounded. Since the
considered DNC is of capacity C, the number of accepted strings of weight w increases
with an exponential order equal to ewC , see Theorem 5. The probability of strings of
weight w decreases with an exponential order equal to 2−wC′

. Since C ′ < C, the number
of strings increases exponentially faster than the probability of strings decreases. This
guarantees that the sum over the probabilities will be larger than 1 for some bounded d.
We use this observation in scenario 2. and scenario 3. It remains to comment why it is
always possible to make the sum become exactly equal 1. As we increase the size of the
branches by concatenating them to their sub-branches, we decrease their probabilities.
Because of this, the deletion of branches together with the variation of C̄ between C ′

and C will allow us to adjust the sum exactly to 1.
The deletion of branches from the tree decreases the entropy rate, but not below

C ′ (consider the remaining tree together with Lemma 10). Concatenating branches to
their sub-branches does not change the entropy rate (consider the resulting tree together
with Lemma 10). The variation of C̄ between C ′ and C only increases the entropy rate.
Together we have

H̄(X) ≥ C ′ (4.43)

which concludes the proof.

60

4 Information Theoretic Aspects

4.3. Uniquely Decodable Codes

4.3.1. Capacity Achieving Distribution

There are DNCs where it is possible to define a capacity achieving random source . In [7],
the authors showed that such a source exists for all DNCs that can be represented by a
strongly connected FSM. Here, we will consider DNCs that are of the form A = (A?, w)
where A = {a1, a2 . . . , am} forms a uniquely decodable code. The generating function of
A is given by

GA (y) =
∞∑

k=0

[
yw(a1) + yw(a2) + · · ·+ yw(am)

]k
. (4.44)

According to Theorem 6, the capacity of A is given by C = − log R, where R is the radius
of convergence of GA (x). The number R is in our case given by the smallest positive
solution of

yw(a1) + yw(a2) + · · ·+ yw(am) = 1. (4.45)

Let X denote a random process that generates strings accepted by A. We now want
to find the capacity achieving distribution of X. To do this, we represent A? by a tree.
This leads to a periodic tree that is of the same form below every node, i.e., the set of
branches that start at the same node is identical for every node. Conditioned on the
current node, Lemma 10 suggest for the branch ai the probability

p(ai) = e−w(ai)C . (4.46)

We assign to the branches in our tree the probabilities suggested by Lemma 10. If the
probabilities of branches starting at the same node sum up to one, then they define a
distribution, and according to Lemma 10, this distribution is capacity achieving. For the
sum we have

m∑
i=1

p(ai) =
m∑

i=1

e−w(ai)C (4.47)

=
m∑

i=1

e−w(ai)(− log R) (4.48)

=
m∑

i=1

ew(ai) log R (4.49)

=
m∑

i=1

Rw(ai) (4.50)

= 1 (4.51)

where equality in (4.51) follows from the fact that R is a solution of (4.45). The random
process X = {Xl}∞l=1 with Xl independent and identically distributed (i.i.d.) according to

p(ai) = e−w(ai)C , i = 1, . . . ,m (4.52)

is therefore capacity achieving.

61

4 Information Theoretic Aspects

4.3.2. McMillan’s Inequality

We will now use this result to generalize McMillan’s inequality, which gives a necessary
condition for a set to form a uniquely decodable code. From (4.51), we know that the
capacity C of A satisfies the equation

∞∑
i=1

e−w(ai)C = 1. (4.53)

We will now derive an upper bound on the capacity C and we will plug it into (4.53).
This will lead to a generalized form of McMillan’s inequality. Since the distribution of X
is capacity achieving, we know that the entropy rate of X is equal to the capacity C. Let
Wn denote the average weight of paths that start at the root and consist of n branches.
We then have

C = H̄(X (4.54)

= lim
n→∞

H(X1, . . . , Xn)
Wn

(4.55)

= lim
n→∞

n∑
l=1

H(Xl)

Wn
(4.56)

= lim
n→∞

nH(X1)
nW1

(4.57)

=
H(X1)

W1
(4.58)

≤ log |A|
W1

(4.59)

≤ log |A|
min
ai∈A

w(ai)
(4.60)

where we have equality in (4.56) and (4.57) since the random variables Xl are i.i.d. The
inequality in (4.59) follows from a known upper-bound on entropy, see [2]. We have
inequality in (4.60) since the average weight of the branches that start at the same node
is lower bounded by the smallest branch weight. We define

wmin = min
ai∈A

w(ai) (4.61)

62

4 Information Theoretic Aspects

and plug (4.60) into (4.53). We then have

1 =
∞∑
i=1

e−w(ai)C (4.62)

≥
∞∑
i=1

e
−w(ai)

log |A|
wmin (4.63)

=
∞∑
i=1

|A|−
w(ai)

wmin . (4.64)

We formulate this result in the following theorem:

Theorem 9. Let A = {a1, . . . , Am} denote a set of strings with the associated positive
weights w(A) = {w(a1), . . . , w(am)}. Let wmin denote the smallest string weight that
occurs in w(A). If the pair (A,w) forms a uniquely decodable code, then the following
inequality holds

∞∑
i=1

|A|−
w(ai)

wmin ≤ 1. (4.65)

4.4. Shannon’s Telegraphy Channel

In this section, we calculate the capacity and the capacity achieving distribution for
Shannon’s telegraphy channel T . To illustrate the results from Section 4.2, our derivation
will be based on the representation of the channel T by a tree. Note that the authors of
[7] derived the same capacity achieving distribution by means of matrix theory.

4.4.1. Capacity

In Section 3.4, we calculated for the generating function of T the exponential order of its
coefficients N [wk]. We did this by determining the smallest positive solution P of the
equation

1− (z2 + z4 + z5 + z7 + z8 + z10) = 0. (4.66)

According to Theorem 7, the capacity of T is then given by

C = − log P. (4.67)

Equation (4.66) can also be put into the form

z2 + z4 + z5 + z7 + z8 + z10 = 1 (4.68)

63

4 Information Theoretic Aspects

PSfrag replacements

d

d

d

d

d

D

D

D
D

D

s

s

s

S

S

S

...

1 2 3 4

Figure 4.1.: Strings accepted by the telegraphy channel represented by a tree.

64

4 Information Theoretic Aspects

4.4.2. Capacity Achieving Distribution

We represent the strings allowed by T by a tree, see Figure 4.1. The random process
X = {Xl}∞l=1 generates a walk down the tree. In the lth step, the random variable Xl

takes a value in

{d, D, s, S} (4.69)

according to some distribution. To ensure that this distribution is capacity achieving,
we have to guarantee that the string s = X1X2 . . . can be divided into finite substrings
s = s1s2s3 · · · such that the conditioned probability

pi(a) = P [si = a|s1, s2, . . . , si−1] (4.70)

is given by

pi(a) = e−w(a)C . (4.71)

We take a closer look at Figure 4.1 and see that the tree consists of the periodic repetition
of two different subtrees. One is marked by a circle and the other is marked by a box.
Because of the periodic repetition, we have to guarantee (4.71) for the paths through
these subtrees. For the encircled subtree we therefore have

pc(d) = e−2C (4.72)

pc(D) = e−4C (4.73)

and for the boxed subtree we have

pb(sd) = e−(3+2)C = e−5C (4.74)

pb(sD) = e−(3+4)C = e−7C (4.75)

pb(Sd) = e−(6+2)C = e−8C (4.76)

pb(SD) = e−(6+4)C = e−10C . (4.77)

These assignments are only valid if the probabilities of the paths of depth 2 that start
at the root sum up to 1. We do not know the probabilities of the paths of depth 2 that
start with d or D, but we know that the sum of their probabilities is given by

pc(d) + pc(D) = e−2C + e−4C . (4.78)

We thus have to check if the sum

e−2C + e−4C + e−5C + e−7C + e−8C + e−10C (4.79)

is equal to one. Substituting in the left-hand side of (4.68) the variable z by the solution
e−C results in (4.79). Since the right-hand side of (4.68) is equal to one, we conclude

65

4 Information Theoretic Aspects

that the sum (4.79) is equal to one. Our probability assignments are therefore valid. The
remaining probabilities are given by

pb(s) = pb(sd) + pb(sD) = e−5C + e−7C (4.80)

pb(S) = pb(Sd) + pb(SD) = e−8C + e−10C (4.81)

pb(d) =
pb(sd)
pb(s)

=
pb(Sd)
pb(S)

=
1

1 + e−2C
(4.82)

pb(D) =
pb(sD)
pb(s)

=
pb(SD)
pb(S)

=
1

1 + e2C
. (4.83)

Inside the boxed subtree, the amount of information per symbol weight varies around
C. However, for the paths through the boxed subtree, the amount of information per
string weight is exactly equal C. For the encircled subtree, the amount of information
per string weight is also exactly equal C. It follows from our results in Section 4.2 that
the distribution as defined by the upper equations is capacity achieving.

66

5 Conclusions

5. Conclusions

In this work, we developed a technique to investigate the asymptotic behavior of combina-
torial structures of exponentially increasing complexity by analytic methods. Our results
for the exponential behavior apply in the general case where incommensurable string
weights are allowed, and where the considered structure can possibly not be represented
by a FSM. In this way, we generalized the corresponding results from [1] and [7]. From
an engineering point of view, it is questionable if there will ever be a need for these
generalizations in practice. First, all our observations of the real world result in a finite
set of rational numbers and rational numbers from a finite set are always commensurable.
Second, if a system specification cannot be represented by a FSM, then it is in general of
infinite memory. We therefore see the analytic method rather as an alternative to the
method used in [1] and [7], which is based on matrix theory. We believe that our method
together with the results from [14] and [13] will in many cases allow a simpler and more
elegant solution of problems in the practice.

In our derivations, we generalized Pringsheim’s Theorem to the case of non-integer
valued string weights. Pringsheim’s Theorem in its original form states that if the Taylor
series expansion of an analytic function f(z) around the origin has nonnegative coefficients,
and if the radius of convergence of the Taylor series expansion is equal R, then f(z) has
a singularity in z = R. We conjecture that Pringsheim’s Theorem can be strengthened,
and that f(z) has under the upper conditions a pole in z = R. If our conjecture holds,
then we can calculate the exponential behavior of a general DNC from its real generating
function by looking for its smallest positive pole. This would be a powerful result.

For the number N [w] of distinct strings of weight w that are accepted by a DNC, we
showed how we can predict the sub-exponential behavior from the analytic characteristics
of the corresponding generating function with in many cases arbitrary precision. It would
be interesting to find a practical problem where the knowledge of the sub-exponential
behavior is necessary. In the most part of problems in communications, it suffices to
determine the exponential behavior of the system of interest. Perhaps the sub-exponential
behavior is of interest when investigating the performance of universal codes and pattern
codes.

By an example, we showed that for incommensurable string weights, not the sub-
exponential behavior of N [w], but the sub-exponential behavior of the sum

∑
v≤w N [v]

can be obtained from the analytic characteristics of the corresponding generating function.
It would be interesting to investigate this relationship with mathematical rigor.

Another open problem is the converse of the fundamental theorem of DNCs. In [7],
it was proved for the case where the considered DNC can be represented by a strongly
connected FSM. It seems clear that the converse also holds for the general case, a rigorous
mathematical proof for general DNCs is however still missing.

67

5 Conclusions

68

A Notation

A. Notation

A,B discrete noiseless channel
a.e. almost everywhere
DNC discrete noiseless channel
FSM finite state machine
GEN (x) generating series
G (y) real generating function
G (z) complex generating function
G (es) complex generating function
i.i.d. independent and identically distributed
i.o. infinitely often
log natural logarithm
r.o.c. region of convergence

69

A Notation

70

B Mathematics

B. Mathematics

B.1. Complex Analysis

B.1.1. Analytic Functions

Definition 13. Let Ω be a region in C (an open and connected subset of C). A function
f : Ω 7→ C is called analytic in Ω if the limes

lim
z→z0

f(z)− f(z0)
z − z0

(B.1)

exists for all z0 ∈ Ω.

Lemma 11. [22, p. 35]. Let f, g be functions analytic in Ω. For all z ∈ Ω we have:

i. Linearity: For arbitrary λ, µ ∈ C it holds that

(λf + µg)′(z) = λf ′(z) + µg′(z). (B.2)

ii. Product- and quotient-rule:

(fg)′(z) = f ′(z)g(z) + f(z)g′(z) (B.3)

(f/g)′(z) =
f ′(z)g(z)− f(z)g′(z)

g2(z)
. (B.4)

iii. Chain-rule: If f is analytic in z and g is analytic in w = f(z), then g ◦ f is
differentiable in z and we have

(g ◦ f)′(z) = g′(f(z))f ′(z). (B.5)

Theorem 10. [22, p. 85] (Taylor series expansion). Let Ω be a region in C. Let f : Ω 7→ C
be a function analytic in Ω. Let a be a point in Ω with distance from the boundary of Ω
equal δ. Then

f(z) =
∞∑

k=0

f (k)(a)
k!

(z − a)k (B.6)

for all z ∈ Dδ(a). The region Dδ(a) is an open disc around a. The boundary of Dδ(a) is
of radius δ.

71

B Mathematics

Theorem 11. [22, p. 99] (Laurent series expansion). Let f be analytic in

Ω ⊃
{
z ∈ C

∣∣a < |z| < b
}
, 0 ≤ a < b ≤ ∞. (B.7)

Then

f(z) =
∞∑

k=−∞
ckz

k, a < |z| < b (B.8)

where the coefficients ck are for a < r < b given by

ck =
1

2πi

∫
∂Dr(0)

f(ζ)
ζk

dζ

ζ
, k ∈ Z. (B.9)

The integral is in counter-clockwise direction along the boundary ∂Dr(0) of the disc Dr(0)
of radius r centered at zero. The part of the sum in (B.8) with k negative is called the
main part of the Laurent series expansion of f(z) around zero.

Definition 14. Let f : Ω \ a 7→ C̄ be a function analytic in the region Ω \ a. If the limit
z → a exists and is equal ∞, then a is called a pole of f and we can represent f by a
Laurent series expansion around a with some smallest positive n < ∞ such that

f(z) =
∞∑

k=−n

ck

(z − a)k
. (B.10)

We call n the multiplicity of a.

Definition 15. Let Ω be a region in C. Functions f : Ω 7→ C̄ that are analytic in Ω except
for a countable number of poles (where they take the value ∞) are called meromorphic
in Ω.

B.1.2. Localization of Poles

Theorem 12. [11, p. 256] (Argument Principle). Let f(z) be an analytic function in a
region Ω and let γ be a simple closed curve interior to Ω, and on which f is assumed to
have no zeros. The number of zeros of f(z) (counted with multiplicity) inside γ equals
the winding number of the transformed contour f(γ) around the origin.

Theorem 13. Suppose f(x) is a polynomial with real coefficients and z is a complex
root of f(x). Then the conjugate of z is also a root of the polynomial.

B.1.3. Analyticity of zr

Making zτ Analytic in z0 6= 0

Lemma 12. For an arbitrary point z0 ∈ C \ {0}, a term of the form

azτ , z ∈ C, a, τ ∈ R (B.11)

can be turned into a function of z analytic in z0.

72

B Mathematics

Proof. If z0 /∈ R	, we define

Log z =
{
w
∣∣ exp(w) = z,−π < ={w} < π

}
. (B.12)

The function Log z is analytic in C \ R	. We define

g(z) = azτ (B.13)
= a exp(Log z)τ (B.14)
= a exp(τ Log z). (B.15)

The function h(z) = a exp(τw) is analytic in C. We write g(z) = (h◦Log)(z) and because
of the chain-rule for analytic functions given in Lemma 11(iii.), we made g(z) analytic in
z0. If z0 ∈ R	, we define

Log z =
{
w
∣∣ exp(w) = z, 0 < ={w} < 2π

}
. (B.16)

The function Log z is then analytic in C \R⊕ and we can again make f(z) analytic in z0.
This concludes the proof.

Why
√

z Cannot Be Made Analytic In Zero

In C,
√

z has two distinct solutions. This can be seen in the following way: we write
z = |z| exp(i arg z). The two solutions of

√
z can then be written as

zk =
√
|z| exp

[
i

(
arg z

2
+ k

2π

2

)]
, k ∈ {0, 1}. (B.17)

To make
√

z analytic in zero we have to define a function f(z) that fulfills f2(z) = z and
is complex differentiable in a region Ω around zero. This implies that the function f(z) is
continuous in Ω. We consider f(z) on a circle w(t) ∈ Ω defined as

t 7→ w(t) = a exp(it), a ∈ R+, 0 ≤ t ≤ 2π. (B.18)

We define f
(
w(0)

)
as

f
(
w(0)

)
=
√
|w(0)| (B.19)

=
√

a. (B.20)

It follows from (B.17) that the only continuous expansion of f on w(t) is

f
(
w(t)

)
=
√

a exp
(

it

2

)
. (B.21)

However, for t = 2π we have w(2π) = w(0) but

f
(
w(t)

)
= −

√
a (B.22)

6= f
(
w(0)

)
. (B.23)

We conclude that
√

z cannot be made analytic in 0.

73

B Mathematics

B.2. Miscellaneous Mathematics

B.2.1. Proof of Lemma 4

Lemma 6. Let A = (A,w) represent a DNC with the set of accepted strings A resulting
from the concatenations of symbols from the finite set D. Let

GENA (x) =
∞∑

k=1

N [wk]xk (B.24)

denote the generating series of A.

i. For any integer n ≥ 0

max
wk<n

k < LnK (B.25)

for some constant K > 0 and some constant L > 0.

ii. There exist some constant R > 0 and some constant M > 0 such that

N [wk] < MRwk , a.e. (B.26)

with respect to k.

Proof. The weight function w : A 7→ R⊕ of A is completely defined by the weights of the
symbols from the finite alphabet D. We assume |D| = q and denote by ν1 ≤ · · · ≤ νq the
weights of the symbols from D. For every symbol s ∈ A there exist some nonnegative
integers ns,1, . . . , ns,q such that

w(s) = ns,1ν1 + · · ·+ ns,qνq. (B.27)

We therefore have

w(A) ⊆
{
n1ν1 + · · ·+ nqνq

∣∣n1, . . . , nq ∈ Z⊕
}
. (B.28)

We calculate an upper-bound for the left-hand side of (B.25).

max
wk<n

k = |w ∈ w(A) : w < n| (B.29)

≤
∣∣{n1, . . . , nq ∈ Z⊕

∣∣n1ν1 + · · ·+ nqνq < n
}∣∣ (B.30)

≤
∣∣{n1, . . . , nq ∈ Z⊕

∣∣(n1 + · · ·+ nq)ν1 < n
}∣∣ (B.31)

≤
∣∣∣∣{n1, . . . , nq ∈ Z⊕

∣∣n1, . . . , nq <
n

ν1

}∣∣∣∣ (B.32)

≤
(

n

ν1

)q

(B.33)

74

B Mathematics

which shows that (B.25) is fulfilled for K = q and L = ν−q
1 . This proves i.

To prove ii., we write

N [wk] = [xwk]GENA (x) (B.34)

≤ [xwk]

(∞∑
l=0

(xν1 + · · ·+ xνq)l

)
(B.35)

≤
∑

w≤wk

[xw]

(∞∑
l=0

(xν1 + · · ·+ xνq)l

)
(B.36)

≤
∑

w≤wk

[xw]

(∞∑
l=0

(xν1 + xν1 + · · ·+ xν1)l

)
(B.37)

=
∑

w≤wk

[xw]

(∞∑
l=0

qlxlν1

)
(B.38)

≤

l
wk
ν1

m∑
l=0

ql (B.39)

where (B.35) follows from A ⊆ D? and where the inequality in (B.37) holds because
ν1 ≤ νi, i = 1, . . . , q. We further get

l
wk
ν1

m∑
l=0

ql =
q

l
wk
ν1

m
− 1

q − 1
(B.40)

≤ q
wk
ν1

+1 − 1
q − 1

(B.41)

≤ q
wk
ν1

+1

q − 1
(B.42)

=
q

q − 1

(
q

1
ν1

)wk

(B.43)

which shows that (B.26) is fulfilled for M = q/(q − 1) and R = q1/ν1 . This proves ii.

B.2.2. Proof of Lemma 6

Lemma 6. Assume that {wk}∞k=1 is a strictly ordered sequence of positive real numbers
that is not too dense in the sense that for any integer n ≥ 0

max
wk<n

k ≤ LnK (B.44)

75

B Mathematics

for some constant L > 0 and some constant K ≥ 0. Let ρ be a nonnegative real number.
Then the sum

∞∑
k=1

ρwk (B.45)

converges if and only if ρ < 1.

Proof. We have to show that the sum (B.45) diverges for ρ ≥ 1 and converges for
0 < ρ < 1.

Assume ρ ≥ 1. We then have

n∑
k=1

ρwk ≥
n∑

k=1

1wk (B.46)

= n. (B.47)

The left side of this equality becomes the sum (B.45) for n →∞. However, the right-hand
side of the inequality goes to infinity for n → ∞. This implies that the sum (B.45)
diverges for any ρ ≥ 1.

Assume now that 0 < ρ < 1. In this case we have

∞∑
k=1

ρwk ≤
∞∑

k=1

ρbwkc (B.48)

=
∞∑

n=0

ρn

(
max

wk<n+1
k − max

wk<n
k

)
(B.49)

≤
∞∑

n=0

ρn max
wk<n+1

k (B.50)

≤
∞∑

n=0

ρnL(n + 1)K (B.51)

=
∞∑

n=0

1
ρ
ρn+1LnK (B.52)

=
L

ρ

∞∑
n=1

(
ρn

K
n

)n
. (B.53)

The sum in the last line converges if there exists for every ρ with 0 < ρ < 1 a natural
number n0 such that for every n > n0

ρn
K
n < 1. (B.54)

76

B Mathematics

We prove this by showing that for any fixed K > 0, n
K
n goes to 1 for n →∞. We have

lim
n→∞

n
K
n = lim

n→∞
exp
(

K

n
lnn

)
(B.55)

= exp
(

lim
n→∞

K

n
lnn

)
(B.56)

= exp

(
lim

n→∞

K 1
n

1

)
(B.57)

= exp(0) (B.58)
= 1 (B.59)

where equality in (B.56) holds since the function exp(z) is monotonically increasing, and
where we used in (B.57) the rule of l’Hospital.

B.2.3. Lower Bound of Factorial Function

From the derivation of Stirling’s approximation given in [26] we know that

n! =
√

2πnn+ 1
2 e−n+ θ

12n 0 < θ < 1. (B.60)

We thus have the following lower bound on n!:

n! =
√

2πnn+ 1
2 e−n+ θ

12n (B.61)

=
√

2πne
θ

12n

(n

e

)n
(B.62)

≥ e
θ

12n

(n

e

)n
(B.63)

≥ e
0

12n

(n

e

)n
(B.64)

=
(n

e

)n
. (B.65)

B.2.4. Newton’s Expansion

Theorem 14. (Newton’s expansion). The Taylor series expansion around 0 of the
function f : C → C,

f(z) =
1

(1− z)r
, r ∈ N, |z| < 1 (B.66)

is given by

f(z) =
∞∑

n=0

(
n + r − 1

r − 1

)
zn. (B.67)

We present two proofs for this theorem.

77

B Mathematics

Combinatorial proof of Theorem 14. We have

f(z) =
1

(1− z)r
(B.68)

=
(

1
1− z

)r

(B.69)

=

(∞∑
k=0

zk

)r

(B.70)

where we used in the last line the formula for geometric series. We denote by [zn]f(z)
the nth coefficient of the Taylor series expansion of f(z) around 0. We have

[zn]f(z) = [zn]

(∞∑
k=0

zk

)r

(B.71)

= [zn+r]zr

(∞∑
k=0

zk

)r

(B.72)

= [zn+r]

(∞∑
k=1

zk

)r

(B.73)

= [zn+r]

(
n+1∑
k=1

zk

)r

. (B.74)

The problem is now equivalent to the partition of the integer n + r into r integers xi,
1 ≤ xi ≤ n + 1, such that

n + r =
r∑

i=1

xi, xi ∈ N. (B.75)

We write n + r as an unary string • • • · · · • consisting of n + r circles. We then partition
this string by inserting a barrier | at an arbitrary position in the string, for example
• • | • · · · •. We do this r− 1 times and end up with r partitions. We have (n + r− 1)!/n!
possibilities to insert barriers in the string, and the number of distinct partitions is

(n + r − 1)!
n!(r − 1)!

=
(

n + r − 1
r − 1

)
(B.76)

since the order in which we insert the barriers does not matter. We can now write the
Taylor series expansion of f(z) around 0 as

f(z) =
1

(1− z)r
(B.77)

=
∞∑

n=0

(
n + r − 1

r − 1

)
zn (B.78)

which concludes the proof.

78

B Mathematics

Analytic proof of Theorem 14. From the geometric series, we know that

1
1− z

=
∞∑

k=0

zk. (B.79)

We derivate the left-hand side m times and get

dm

dzm

(
1

1− z

)
=

m!
(1− z)m+1

. (B.80)

The mth derivation of the right-hand side is given by

dm

dzm

(∞∑
k=0

zk

)
=

∞∑
k=m

k!
(k −m)!

zk−m. (B.81)

Together we have

m!
(1− z)m+1

=
∞∑

k=m

k!
(k −m)!

zk−m. (B.82)

We substitue m in (B.82) by r − 1. We then have

(r − 1)!
(1− z)r

=
∞∑

k=r−1

k!
(k − r + 1)!

zk−r+1 (B.83)

⇔

1
(1− z)r

=
∞∑

k=r−1

k!
(k − r + 1)!(r − 1)!

zk−r+1 (B.84)

=
∞∑

n=0

(n + r − 1)!
n!(r − 1)!

zn (B.85)

=
∞∑

n=0

(
n + r − 1

r − 1

)
zn (B.86)

which concludes the proof.

B.3. Equality of Operational and Combinatorial Capacity

We consider in the following a general DNC A = (A,w). We write the set of possible
string weights as {wk}∞k=1 with w1 < w2 < · · · , and we assume that it is not too dense in
the sense that

max
wk≤n

k < LnK (B.87)

79

B Mathematics

for some constant K > 0 and some constant L > 0. For the sequence {N [wk]}∞k=1 of the
number of distinct strings of the weight wk, we assume that it is of exponential order

N [wk] ./ Qwk (B.88)

for some positive and finite Q.

Definition 10. The operational capacity Cop of A we define as

Cop = lim
l→∞

log
(∑

k≤l N [wk]
)

wl
. (B.89)

Definition 11. The combinatorial capacity Ccomb of A we define as

Ccomb = lim sup
k→∞

log N [wk]
wk

. (B.90)

Theorem 5. The combinatorial capacity Ccomb of A is equal to the operational capacity
Cop of A and both are given by

Cop = Ccomb = log Q (B.91)

where Qwk is the exponential order of N [wk].

Proof. The Theorem follows directly from Lemma 13 and Lemma 14.

Lemma 13. The combinatorial capacity Ccomb of A is given by

Ccomb = log Q (B.92)

where Qwk is the exponential order of N [wk].

Proof. From Definition 7, N [wk] is of exponential order Qwk if and only if

lim sup
k→∞

N [wk]
1

wk = Q. (B.93)

We take the logarithm on both sides and get

log Q = log
(

lim sup
k→∞

N [wk]
1

wk

)
(B.94)

= lim sup
k→∞

log
(
N [wk]

1
wk

)
(B.95)

= lim sup
k→∞

log N [wk]
wk

(B.96)

= Ccomb (B.97)

where we have equality in (B.95) since the logarithm is a strictly monotonically increasing
function.

80

B Mathematics

Lemma 14. The operational capacity Cop of A is given by

Cop = log Q (B.98)

where Qwk is the exponential order of N [wk].

Proof. We define I(wl) as

I(wl) = log

∑
k≤l

N [wk]

 . (B.99)

We can directly give the following lower-bound on I(wl)

I(wl) ≥ log
(

max
k≤l

N [wk]
)

(B.100)

which implies for the operational capacity

Cop = lim
l→∞

I(wl)
wl

(B.101)

≥ lim
l→∞

log
(

max
k≤l

N [wk]
)

wl
. (B.102)

For an upper-bound, we have

I(wl) = log

∑
k≤l

N [wk]

 (B.103)

≤ log
(

LwK
l max

k≤l
N [wk]

)
(B.104)

= log L + K log wl + log
(

max
k≤l

N [wk]
)

(B.105)

where (B.104) follows from assumption (B.87). For the operational capacity we have

Cop = lim
l→∞

I(wl)
wl

(B.106)

≤ lim
l→∞

 log L

wl
+

K log wl

wl
+

log
(

max
k≤l

N [wk]
)

wl

 (B.107)

= lim
l→∞

log
(

max
k≤l

N [wk]
)

wl
. (B.108)

81

B Mathematics

Putting (B.102) and (B.108) together yields

Cop = lim
l→∞

log
(

max
k≤l

N [wk]
)

wl
. (B.109)

For the right-hand side, we further get

lim
l→∞

log
(

max
k≤l

N [wk]
)

wl
= lim

l→∞

log M [wl]
wl

(B.110)

= lim
l→∞

log M [wl]
1

wl (B.111)

= log
(

lim
l→∞

M [wl]
1

wl

)
(B.112)

where we used in (B.110) the substitution M [wl] = maxwk≤wl
N [wk], and where we have

equality in (B.112) since the logarithm is strictly monotonically increasing. Because of
assumption (B.88), N [wk] is of exponential order Qwk , or equivalently: for all ε with
Q > ε > 0, the following holds:

N [wk] ≥ (Q− ε)wk , i.o. (B.113)
and

N [wk] ≤ (Q + ε)wk , a.e.. (B.114)

But since M [wk] ≥ N [wk], for all k ∈ N, (B.115) also holds for M [wk]:

M [wk] ≥ (Q− ε)wk , i.o. (B.115)

If inequality (B.114) is fulfilled almost everywhere, then it is also fulfilled for M [wk]
almost everywhere:

M [wk] ≤ (Q + ε)wk , a.e. (B.116)

This can be seen as follows: assume that

N [wm] > (Q + ε)wm (B.117)

holds for some m, and assume further that M [wl] = N [wm] for m ≤ l ≤ n for some
arbitrary large n. Then

M [wl] > (Q + ε)wl (B.118)

is only fulfilled for wl in some finite interval, since the right side increases exponentially.
But according to our assumption in (B.87), the set {wk}∞k=1 is not too dense, which
implies that for any finite interval, the number of elements from {wk}∞k=1 that lie in this

82

B Mathematics

interval is finite. It follows that N [wm] > (W +ε)wm for some m implies M [wl] > (Q+ε)wl

only for a finite number of l.
It follows from (B.115) and (B.116) together with Definition 7 that M [wk] is of

exponential order Qwk , i.e.,

lim
l→∞

M [wl]
1

wl = Q. (B.119)

Putting our results together, we have shown that

Cop = lim
l→∞

log
(

max
k≤l

N [wk]
)

wl
(B.120)

= log
(

lim
l→∞

M [wl]
1

wl

)
(B.121)

= log Q (B.122)

which concludes the proof.

83

B Mathematics

84

Bibliography

Bibliography

[1] C. E. Shannon and W. Weaver, The Mathematical Theory Of Communication.
Urbana and Chicago: University of Illinois Press, 1963.

[2] T. M. Cover and J. A. Thomas, Elements of Information Theory. John Wiley &
Sons, Inc, 1991.

[3] J. L. Massey, Applied Digital Information Theory. lecture notes, ETHZ, 1998.

[4] A. Lapidoth, Information Transfer. lecture notes, ETHZ, 2005.

[5] H. Bölcskei, Fundamentals of Wireless Communication. lecture notes, ETHZ, 2005.

[6] D. N. C. Tse and P. Viswanath, Fundamentals of Wireless Communication. Cam-
bridge University Press, 2005.

[7] A. Khandekar, R. McEliece, and E. Rodemich, “The discrete noiseless channel
revisited,” in Coding, Communications, and Broadcasting. Research Studies Press
Ltd., 2000, pp. 115–137.

[8] A. M. Odlyzko, “Enumeration of strings,” AT&T Bell Laboritories, Murray Hill,
New Jersey 07974 USA, Tech. Rep., 1984.

[9] ——, “Asymptotic enumeration methods,” AT&T Bell Laboritories, Murray Hill,
New Jersey 07974 USA, Tech. Rep., 19??

[10] “Message from the founding editors,” Online Journal of Analytic Combinatorics,
accessed 26.10.06. [Online]. Available: http://www.ojac.org/message.html

[11] P. Flajolet and R. Sedgewick, Analytic Combinatorics, Oktober 2006, version
“Oktoberfest”. [Online]. Available: http://algo.inria.fr/flajolet/Publications/books.
html

[12] B. H. Marcus, R. M. Roth, and P. H. Siegel, An Introduction to
Coding for Constrained Systems, 5th ed., October 2001. [Online]. Available:
http://vivaldi.ucsd.edu:8080/∼psiegel/Book/Book Draft.html

[13] C. Pimentel and B. F. Uchoa-Filho, “A combinatorial approach to finding the
capacity of the discrete noiseless channel,” Information Theory, IEEE Transactions
on, vol. 49, no. 8, pp. 2024–2028, 2003.

[14] L. J. Guibas and A. M. Odlyzko, “String overlaps, pattern matching, and nontransi-
tive games,” Journal of Combinatorial Theory, vol. A 30, pp. 183–208, 1981.

85

Bibliography

[15] C. Pimentel, “Generating series and capacity for constrained sequences,” Revista da
Sociedade Brasileira de Telecomunicaes, vol. 12, no. 2, pp. 104–107, 1997.

[16] V. C. da Rocha, “Some information-theoretic aspects of uniquely decodable codes,”
Coding, Communications, and Broadcasting, pp. 39–47, July 2000.

[17] R. Wattenhofer, Discrete Event Systems. lecture notes, ETHZ, 2005. [Online].
Available: http://dcg.ethz.ch/lectures/ws0506/eventsystems/index.html

[18] H.-A. Loeliger, Algebra, Codes, and Signal Processing. lecture notes, ETHZ, 2005.

[19] A. A. Sardinas and G. W. Patterson, “A necessary and sufficient condition for
the unique decomposition of coded messages,” IRE Convention Record, Part 8, pp.
104–108, 1953.

[20] E. Gilbert, “Synchronization of binary messages,” Information Theory, IEEE
Transactions on, vol. 6, no. 4, pp. 470–477, 1960. [Online]. Available:
http://ieeexplore.ieee.org/xpls/abs all.jsp?arnumber=1057587

[21] S. A. Savari, “A probabilistic approach to some asymptotics in noiseless communi-
cation,” Information Theory, IEEE Transactions on, vol. 46, no. 4, pp. 1246–1262,
2000.

[22] C. Blatter, Komplexe Analysis, Fourier- und Laplace-Transformation fuer
Ingenieure. lecture notes, ETHZ, January 2006. [Online]. Available: http:
//www.math.ethz.ch/∼blatter/

[23] G. F. Franklin, J. D. Powell, and A. Emami-Naeini, Feedback Control of Dynamic
Systems, 4th ed. Prentice Hall, 2002.

[24] A. V. Oppenheim and R. W. Schafer, Discrete-Time Signal Processing, 2nd ed.
Prentice Hall, 1999.

[25] “Newton’s method,” Wikipedia, accessed 06.11.06. [Online]. Available: http:
//en.wikipedia.org/wiki/Newton’s method

[26] “Stirling’s approximation,” PlanetMath, accessed 12.02.07. [Online]. Available:
http://planetmath.org/encyclopedia/StirlingsApproximationFormula.html

86

