Lecture Nodes on Variable Length Coding

Georg Böcherer

www.georg-boecherer.de Email: mail@georg-boecherer.de

2016

1/64

Contents

Probability and Information Measures

Rooted Trees with Probabilities

Distribution Matching

Data Compression

Coding for Noiseless Channels

Further Reading

References

Outline

Probability and Information Measures

Rooted Trees with Probabilities

Distribution Matching

Data Compression

Coding for Noiseless Channels

Further Reading

References

Logarithm

The *binary logarithm* and the *natural logarithm* are defined as

$$\log_2 x = a \Leftrightarrow 2^a = x, \quad \ln x = a \Leftrightarrow e^a = x. \tag{1}$$

Problem 1.

- 1. For which real numbers x is the logarithm defined?
- 2. Express $\log_2 x$ by the natural logarithm.
- 3. Use the definition of the binary logarithm to derive the following identities.

$$\log_2(xy) = \log_2 x + \log_2 y \tag{2}$$

$$x\log_2 y = \log_2(y^x) \tag{3}$$

$$-\log_2 x = \log_2 \frac{1}{x}.$$
 (4)

Logarithm

Problem 2.

- 1. The derivative of the natural logarithm is $\frac{\partial \ln x}{\partial x} = \frac{1}{x}$. Use it to calculate $\frac{\partial \log_2 x}{\partial x}$. Express your result in terms of the binary logarithm.
- 2. Show that

$$\log_2 x \le (x-1)\log_2 e. \tag{5}$$

When does equality hold?

5/64

Random Variables

- Random variable X.
- Alphabet $\mathcal{X} = \{x_1, x_2, \ldots, x_n\}.$
- ▶ Distribution $P_X : \mathcal{X} \to \mathbf{R}$, $a \mapsto P_X(a) = \Pr\{X = a\}$ and

$$\forall a \in \mathcal{X} \colon P_X(a) \ge 0 \tag{6}$$

$$\sum_{a \in \mathcal{X}} P_X(a) = 1.$$
 (7)

▶ Support: supp $P_X = \{a \in \mathcal{X} : P_X(a) > 0\}.$

Joint Distribution

- Let X, Y be two random variables with joint distribution P_{XY}: X × Y → R.
- ► The marginal distributions of X and Y are

$$P_X(a) = \sum_{b \in \mathcal{Y}} P_{XY}(a, b), \quad P_Y(b) = \sum_{a \in \mathcal{X}} P_{XY}(a, b). \tag{8}$$

• If $P_Y(b) > 0$, then the distribution of X conditioned on Y is

$$P_{X|Y}(a|b) = \frac{P_{XY}(a,b)}{P_Y(b)}.$$
(9)

7 / 64

Joint and conditional distributions: Problems

Problem 3.

- 1. Show that for each $b \in \text{supp } P_Y$, $P_{X|Y}(\cdot|b)$ is a distribution.
- 2. Show that if $P_X(a) = 0$ then $P_{XY}(a, b) = 0$ for all $b \in \mathcal{Y}$.
- 3. Let $P_Y(b) = 0$. Show that the identity

$$P_{X|Y}(a|b)P_Y(b) = P_{XY}(a,b)$$
(10)

holds for each $a \in \mathcal{X}$ and each choice of $P_{X|Y}(\cdot|b)$. Consequently, for $P_Y(b) = 0$, we can freely choose $P_{X|Y}(\cdot|b)$.

Expectation

Let X be a random variable and consider the real-valued function $f: \mathcal{X} \to \mathbf{R}$. The *expectation* of f(X) is defined as

$$\mathsf{E}[f(X)] := \sum_{a \in \operatorname{supp} P_X} P_X(a) f(a). \tag{11}$$

If X ⊂ R, then E(X) is defined and called the expectation of X.

9/64

Informational Divergence

The informational divergence of two distributions P_X and P_Y with $\mathcal{X} = \mathcal{Y}$ is

$$D(P_X || P_Y) = \sum_{a \in \text{supp } P_X} P_X(a) \log_2 \frac{P_X(a)}{P_Y(a)} = E\left[\log_2 \frac{P_X(X)}{P_Y(X)}\right]$$
(12)

Informational divergence: Problems

Problem 4.

1. Show that

$$0 \stackrel{(a)}{\leq} \mathsf{D}(P_X \| P_Y). \tag{13}$$

Hint: Use $\log_2 x \leq (x-1) \log_2 e$.

- 2. When does equality hold in (a)?
- 3. Provide an example where $D(P_X || P_Y) \neq D(P_Y || P_X)$.

Entropy

The *entropy* of a random variable X is

 $H(P_X) := \sum_{a \in \text{supp } P_X} P_X(a)[-\log_2 P_X(a)] = E[-\log_2 P_X(X)].$ (14)

Entropy: Problems

Problem 5.

1. Let P_X be some distribution on \mathcal{X} and let P_U be the uniform distribution on \mathcal{X} . Show that

$$\mathsf{H}(P_X) = \log_2 |\mathcal{X}| - \mathsf{D}(P_X || P_U). \tag{15}$$

2. Show that

$$0 \stackrel{(\mathsf{a})}{\leq} \mathsf{H}(P_X) \stackrel{(\mathsf{b})}{\leq} \log_2 |\mathcal{X}|. \tag{16}$$

3. When does equality hold in (a) and when does equality hold in (b)?

13/64

Outline

Probability and Information Measures

Rooted Trees with Probabilities

Distribution Matching

Data Compression

Coding for Noiseless Channels

Further Reading

References

Rooted Trees: Example

Rooted trees: Nodes

- ► A node is connected by a *directed edge* with its sucessors.
- A node without sucessors is a *leaf*.
- ► A node with successors is a *branching node*.
- ► All node except one have exactly one *predecessor*.
- ► The node without predecessor is the *root*.
- The depth of a node is the number of edges on the path from the root to the node.

Node enumeration

We use the following convention:

- The root has number 1.
- ► The node numbers increase with increasing depth.
- Leafs have smaller numbers than branching nodes of the same depth.

Problem 6. Suppose a binary rooted tree has *n* leaves. What is the number of branching nodes? What is the total number of nodes?

Paths and path length

- A sequence of edges connecting the root with a leave is called a path.
- ▶ The number of edges in a path is the *path length*.
- The path length is equal to the depth of the corresponding leaf.

Node Classes

For a rooted tree, we define the following node classes:

- \blacktriangleright \mathcal{N} : all nodes.
- \blacktriangleright \mathcal{L} : leaves.
- \mathcal{L}_i : leaves reachable from node *i*.
- $\mathcal{B} = \mathcal{N} \setminus \mathcal{L}$: branching nodes.

Node Classes: Example

Leaf Distribution

Problem 7. Let *L* be a random variable with alphabet \mathcal{L} and distribution *Q*.

- 1. What is the probability that a path that ends in L passes through node i? We denote this probability by Q(i).
- 2. Let t be the minimal leaf depth and $s \le t$. Show that Q defines a distribution on the nodes of depth s.
- 3. Let S_i be the successors of *i*. Suppose a path to *L* crosses *i*. What is the probability that it crosses $a \in S_i$? We denote this branching distribution by P_{S_i} the corresponding random number by S_i .

Example

Leaf distribution: $Q(2) = \frac{1}{4}$, Q(4) = 0, $Q(6) = \frac{1}{4}$, $Q(7) = \frac{1}{2}$. $Q(3) = \sum_{i \in \mathcal{L}_3} Q(i) = 0 + \frac{1}{4} + \frac{1}{2} = \frac{3}{4}$ $S_1 = \{2, 3\}$ $P_1(3) = \frac{Q(2)}{Q(1)}$ Q(1) = 1 $P_{S_1}(2) = \frac{1}{4}$ $Q(3) = \frac{3}{4}$ $Q(3) = \frac{3}{4}$ $Q(3) = \frac{3}{4}$ $P_{S_3}(5) = 1$ $Q(5) = \frac{3}{4}$ $Q(7) = \frac{1}{2}$

Edge Labels

A tree with edge labels in \mathcal{X} is defined as follows:

- Each node has $|\mathcal{X}|$ sucessors.
- We label the edges emerging from a branching node by the letters in X.
- We define x(i) as the label of the edge that ends in node *i*.
- The labels of paths through the tree form the set W of words with letters in X.

Edge labels: Example

Consider the binary labels $\mathcal{X} = \{0, 1\}.$

Branching Distribution

A label distribution P_X can be used to define a branching distribution:

$$j \in \mathcal{B}, i \in \mathcal{S}_j \colon P_{\mathcal{S}_j}(i) = P_X[x(i)].$$
(17)

P_X also defines a distribution on the words defined by the tree, namely

$$P_X^{\mathcal{W}}(a) = P_X(a_1) \cdots P_X(a_{\ell(a)}), \quad a \in \mathcal{W}.$$
 (18)

25 / 64

LANSIT¹

- Let f be a real-valued function on the nodes \mathcal{N} .
- For each node i ∈ N \ 1, define
 Δf(i) := f(i) − f(predecessor of i).
- Let S_i be a random variable with alphabet S_i and distribution P_{Si}.

Proposition 1 (LANSIT)

$$\mathsf{E}[f(L)] - f(1) = \sum_{j \in \mathcal{B}} Q(j) \, \mathsf{E}[\Delta f(S_j)] \tag{19}$$

¹Leaf-Average Node-Sum Interchange Theorem [1].

LANSIT: Proof

- Consider a tree with nodes \mathcal{N} .
- Let $S_j \subseteq \mathcal{L}$ be a set of leaves with common predecessor j.

$$\sum_{i \in \mathcal{S}_j} Q(i)f(i) = \sum_{i \in \mathcal{S}_j} Q(j)P_{\mathcal{S}_j}(i) \Big[f(i) - f(j) + f(j)\Big]$$
(20)

$$= Q(j)f(j) \Big[\sum_{i \in S_j} P_{S_j}(i) \Big] + Q(j) \sum_{i \in S_j} P_{S_j}(i) \Delta f(i)$$
(21)

$$= Q(j)f(j) + Q(j) E[\Delta f(S_j)]$$
(22)

- $\mathcal{N} \leftarrow \mathcal{N} \setminus \mathcal{S}_j$ is a new tree with fewer leaves. The node probabilities are still defined via Q.
- Repeat the procedure until j has become the root node 1. Then Q(j = 1) = 1 and Q(j = 1)f(j = 1) = f(1).

LANSIT: Problems²

Problem 8. Use the LANSIT to show the following identities.

1. Path Length Lemma. Function $\ell(i) :=$ node depth of *i*.

$$\mathsf{E}[\ell(L)] = \sum_{i \in \mathcal{B}} Q(i).$$
(23)

2. Leaf Entropy Lemma. Function $f(i) = -\log_2 Q(i)$.

$$\mathsf{H}(P_L) = \sum_{i \in \mathcal{B}} Q(i) \,\mathsf{H}(P_{S_i}). \tag{24}$$

3. Leaf Divergence Lemma. Let Q' be another node distribution with corresponding leaf distribution $P_{L'}$. Function $f(i) = \log_2 \frac{Q(i)}{Q'(i)}$. Then

$$\mathsf{D}(P_L \| P_{L'}) = \sum_{i \in \mathcal{B}} Q(i) \, \mathsf{D}(P_{S_i} \| P_{S'_i}).$$
(25)

²See [2].

27 / 64

LANSIT: Aufgaben

Problem 9.

1. Verify the lemmas for Path Length, Leaf Entropy, and Leaf Divergence by calculating for example trees separately the left-hand and the right-hand sides of the identities.

Complete Trees

- A binary tree is *complete*, if each node has either 2 or no successors.
- A tree with edge labels X is complete if each node has either |X| or no successors.

Permissible Path Lengths

Let $\ell_1, \ell_2, \ldots, \ell_n$ be path lengths. We want to develop a test, by which we can check, whether or not a complete binary tree with these path lengths exists. Let $\ell_{\max} = \max_i \ell_i$. Consider a complete tree, where all paths have length ℓ_{\max} .

- ▶ The tree has $2^{\ell_{max}}$ nodes with depth ℓ_{max} .
- A node with depth $\ell \leq \ell_{max}$ has $2^{\ell_{max}-\ell}$ successors with depth ℓ_{max} .
- We have

$$\sum_{i=1}^{n} 2^{-\ell_i} = 2^{-\ell_{\max}} \underbrace{\sum_{i=1}^{n} 2^{\ell_{\max}-\ell_i}}_{(\star)}$$
(26)

The sum (*) is equal to $2^{\ell_{\max}}$, if the ℓ_i are path lengths of a complete tree.

31 / 64

Kraft-Inequality

We now have the following test. Let $\ell_1, \ell_2, \ldots, \ell_n$ be positive integers.

- ▶ $\sum_{i=1}^{n} 2^{-\ell_i} = 1 \Rightarrow$ a complete binary tree exists with path lengths ℓ_i .
- ▶ $\sum_{i=1}^{n} 2^{-\ell_i} < 1 \Rightarrow$ an incomplete binary exists with path lengths ℓ_i .
- ▶ $\sum_{i=1}^{n} 2^{-\ell_i} > 1 \Rightarrow$ neither a complete nor an incomplete binary tree exists with path lengths ℓ_i .

For non-binary labels \mathcal{X} with $|\mathcal{X}| = D > 2$, we test $\sum_{i=1}^{n} D^{-\ell_i}$.

Outline

Probability and Information Measures

Rooted Trees with Probabilities

Distribution Matching

Data Compression

Coding for Noiseless Channels

Further Reading

References

Discrete Memoryless Source

- A discrete memoryless source P_X generates random variables X₁X₂X₃..., which are stochastically independent and identically distributed according to P_X.
- Let n > 0. We denote $X^n := X_1 X_2 \cdots X_n$. We have

$$\Pr(X^n = a^n) = P_X(a_1)P_X(a_2)\cdots P_X(a_n)$$
(27)

for all $a^n \in \mathcal{X}^n = \mathcal{X} \times \cdots \times \mathcal{X}$.

LANSIT: Problems

Problem 10. Let X^n and Y^n be random vectors. Use the LANSIT to show the following chain rules.

1. Entropy chain rule:

$$H(P_{X^n}) = \sum_{i=1}^n H(P_{X_i|X^{i-1}}|P_{X^{i-1}})$$
(28)

2. Informational divergence chain rule:

$$D(P_{X^{n}} || P_{Y^{n}}) = \sum_{i=1}^{n} D(P_{X_{i}|X^{i-1}} || P_{Y_{i}|X^{i-1}} || P_{X^{i-1}})$$
(29)

35 / 64

Distrbution Matcher

A distribution matcher transforms an input sequence into an output sequence:

$$P_X \rightarrow X_1 X_2 \cdots \rightarrow \text{Distribution Matcher} \rightarrow Y_1 Y_2 \cdots$$

The output is a sequence of letters in \mathcal{Z} , and the frequency by which the letters occur in the output sequence should resemble a target distribution P_Z .

Dictionary and Codebook

- Dicionary:
 - The input letter alphabet is \mathcal{X}
 - The path labels of a complete tree with labels in X form a dictionary W.
 - Example: $\mathcal{X} = \{a, b, c\}, \mathcal{W} = \{a, b, ca, cb, cc\}.$

Codebook:

- The output letter alphabet is \mathcal{Z}
- The path labels of a complete tree with labels in Z form a codebook.
- Example: Z = {0,1}, C = {0,100,101,110,111}. C is a binary codebook.

Parsing the Input

- We parse the input by a dictionary \mathcal{W} with letters in \mathcal{X} .
- ▶ This generates words W with distribution $P_X^{\mathcal{W}}$ given by

$$P_X^{\mathcal{W}}(w) = P_X(w_1) P_X(w_2) \cdots P_X(w_{\ell(w)}), \quad \text{für jedes } w \in \mathcal{W}.$$
(30)

Problem 11. Using the LANSIT, show that

$$H(P_X^{\mathcal{W}}) = E[\ell(W)] H(P_X)$$
(31)

Output of Codewords

We choose as output codewords in \mathcal{C} with letters in \mathcal{Z} . The DM maps the parsed words to codewords by an *injective* function $f: \mathcal{W} \to \mathcal{C}$. Let $Y = f(\mathcal{W})$ denote the codeword at the DM output.

- ▶ The expected codeword length is $E[\ell(Y)]$.
- The codeword target distribution is

$$P_Z^{\mathcal{C}}(y) = P_Z(y_1)P_Z(y_2)\dots P_Z(y_{\ell(y)}), \quad \text{for all } y \in \mathcal{C}.$$
(32)

► The actual distribution of *Y* is

$$P_Y(y) = \begin{cases} P_X^{\mathcal{W}}[f^{-1}(y)] & \text{if } \exists w \colon f(w) = y, \\ 0 & \text{otherwise.} \end{cases}$$
(33)

39/6	64
------	----

Variable length code: Problem

Problem 12. Let $P_Z(0) = P_Z(1) = \frac{1}{2}$ be the target distribution and let $C = \{0, 10, 11\}$ be the codebook. Suppose the actual distribution is $P_Y(0) = P_Y(10) = P_Y(11) = \frac{1}{3}$.

- 1. Calculate the target codeword distribution.
- 2. Calculate the expected codeword length.

Rate

► The DM *Rate R* is given by

that is

$$R := \frac{\mathsf{H}(P_X^{\mathcal{W}})]}{\mathsf{E}[\ell(Y)]}.$$
(35)

41/64

The function $f: \mathcal{W} \rightarrow \mathcal{C}$

We index the dictionary $\mathcal{W} = \{w_1, w_2, \dots, w_n\}$ and the codebook $\mathcal{C} = \{c_1, c_2, \dots, c_m\}$ with $m \ge n$ so that

$$P_X^{\mathcal{W}}(w_1) \ge P_X^{\mathcal{W}}(w_2) \ge \cdots \ge P_X^{\mathcal{W}}(w_n), \tag{36}$$

$$P_Z^{\mathcal{C}}(c_1) \ge P_Z^{\mathcal{C}}(c_2) \ge \cdots \ge P_Z^{\mathcal{W}}(c_m). \tag{37}$$

We then define f by $f: w_i \mapsto c_i$, that is, we map words of smaller probability to codewords of smaller target probability.

Outline

Probability and Information Measures

Rooted Trees with Probabilities

Distribution Matching

Data Compression

Coding for Noiseless Channels

Further Reading

References

43 / 64

Design Objective

For a given DMS P_X , we want to maximize the rate

$$R = \frac{\mathsf{H}(P_X^{\mathcal{W}})]}{\mathsf{E}[\ell(Y)]}$$
(38)

for a binary output alphabet.

Informational Divergence

We choose as target distribution the uniform distribution P_U on $\mathcal{Z} = \{0, 1\}$ and we evaluate the informational divergence.

$$\mathsf{D}(P_X^{\mathcal{W}} \| P_U^{\mathcal{C}}) \stackrel{(\mathsf{a})}{=} \sum_{j \in \mathcal{B}} Q(j) \, \mathsf{D}(P_{S_j} \| P_U)$$
(39)

$$= \sum_{j \in \mathcal{B}} Q(j) \left[\sum_{a \in \mathcal{S}_j} P_{\mathcal{S}_j}(a) \log_2 \frac{P_{\mathcal{S}_j}(a)}{\frac{1}{2}} \right]$$
(40)

$$=\sum_{j\in\mathcal{B}}Q(j)\left[1-\mathsf{H}(P_{\mathcal{S}_{j}})\right] \tag{41}$$

$$\stackrel{(b)}{=} \mathsf{E}[\ell(Y)] - \mathsf{H}(P_X^{\mathcal{W}}). \tag{42}$$

Equality (a) follows by the Leaf Divergence Lemma and (b) by the Path Length Lemma and the Leaf Entropy Lemma. Q(j) are node probabilities for the codebook tree C with leaf distribution $P_X^{\mathcal{W}}$.

45 / 64

Limits

Rate:

$$\frac{\mathsf{H}(\mathcal{P}_X^{\mathcal{W}})}{\mathsf{E}[\ell(Y)]} = 1 - \frac{\mathsf{D}(\mathcal{P}_X^{\mathcal{W}} \| \mathcal{P}_U^{\mathcal{C}})}{\mathsf{E}[\ell(Y)]} \le 1. \tag{43}$$

Expected codeword length:

$$\mathsf{E}[\ell(Y)] = \mathsf{H}(P_X^{\mathcal{W}}) + \mathsf{D}(P_X^{\mathcal{W}} \| P_U^{\mathcal{C}}) \ge \mathsf{H}(P_X^{\mathcal{W}}).$$
(44)

We can either maximize the rate or minimize the minimize the informational divergence per output bit, over all dicionaries W and all codes C. No efficient algorithm is known! Note: we achieve the maximum rate, if $D(P_X^{W} || P_U^{C}) = 0$, the uniform target distribution P_U that we chose before indeed maximizes the rate!

Huffman Coding

For Huffman Coding, we fix the dicionary $\mathcal{W} = \mathcal{X}$. The limits are now

► Rate:

$$\frac{\mathsf{H}(P_X)}{\mathsf{E}[\ell(Y)]} = 1 - \frac{\mathsf{D}(P_X \| P_U^{\mathcal{C}})}{\mathsf{E}[\ell(Y)]} \le 1.$$
(45)

Expected codeword length:

$$\mathsf{E}[\ell(Y)] = \mathsf{H}(P_X) + \mathsf{D}(P_X || P_U^{\mathcal{C}}) \ge \mathsf{H}(P_X).$$
(46)

To maximize the rate, we can now either minimize the expected codeword length or the informational divergence.

Huffman Coding³

The remaining problem: Choose C, so that the expected output length

$$\mathsf{E}[\ell(Y)] = \sum_{x \in \mathcal{X}} P_X(x)\ell[f(x)]$$
(47)

is minimized.

Huffman Coding: Problem

For notational simplicity, we denote the probabilities by p_1, p_2, \ldots, p_n and the expected output lengths by $\ell_1, \ell_2, \ldots, \ell_n$. Problem 13. Show the following properties of an optimal code.

- 1. If $p_i < p_j$ then $\ell_i \geq \ell_j$.
- 2. An optimal codebook is complete.
- 3. Suppose $p_1 \ge p_2 \ge \cdots \ge p_{n-1} \ge p_n$. Then there exists an optimal codebook with

$$\ell_n = \ell_{n-1} = \max_i \ell_i, \tag{48}$$

that is, the leaves with the lengths ℓ_n, ℓ_{n-1} are siblings with a common predecessor.

49 / 64

Huffman Coding: the algorithm

Suppose the path lengths are optimal and fulfill (48). Let L be a random variable on the leaves. The lengths $\ell_1, \ell_2, \ldots, \ell_{n-2}, \ell_{n-1} - 1$ are path lengths of a new tree with the predecessor of the leaves with lengths ℓ_n, ℓ_{n-1} as new leaf. The new leaf has probability $p_n + p_{n-1}$. The new tree has n - 1 leaves. Let L' be a random variable on the leaves of the new tree.

Because of the Path Length Lemma, we have

$$\mathsf{E}[\ell(L)] = \mathsf{E}[\ell(L')] + p_n + p_{n-1}.$$
(49)

Because the path lengths of the tree with n leaves is optimal, the path lengths of the new tree with n - 1 leaves must also be optimal, that is, it must minimize $E[\ell(L')]$. We then therefore construct the optimal tree, by recursively connecting the leaves of smallest probability to a common predecessor.

Outline

Probability and Information Measures

Rooted Trees with Probabilities

Distribution Matching

Data Compression

Coding for Noiseless Channels

Further Reading

References

Problem Statement

- At the input, we have independent and uniformly distributed bits P_U.
- ► The output letters a ∈ Z have different lengths v(a). The values v(a) are positive real number, but not necessarily integers.
- We want to transmit at maximum rate.
- ► The length function *v* defines a *discrete noiseless channel*.

Target distribution

Define the target distribution P_Z as

$$P_Z(a) = 2^{-C_V(a)}, \quad \text{for each } a \in \mathcal{Z}$$
 (50)

where C is chosen such that

$$\sum_{a\in\mathcal{Z}} 2^{-C\nu(a)} = 1.$$
(51)

53 / 64

Zielverteilung

We develop the informational divergence:

$$\mathsf{D}(P_Y \| P_Z) = \sum_{a \in \mathcal{Z}} P_Y(a) \log_2 \frac{P_Y(a)}{2^{-C_V(a)}}$$
(52)

$$= C \sum_{a \in \mathcal{Z}} P_Y(a) v(a) - H(P_Y)$$
(53)

$$= C \operatorname{E}[v(Y)] - \operatorname{H}(P_Y).$$
(54)

Cosequently, we have

$$R = \frac{H(P_Y)}{E[v(Y)]} = C - \frac{D(P_Y || P_Z)}{E[v(Y)]}.$$
 (55)

Thus, C is the maximum rate (also called *capacity* of the noiseless channel v) and it is reached, if $P_Y = P_Z$. This shows that the P_Z chosen by us is indeed optimal.

Distribution Matching

We develop the informational divergence.

$$\mathsf{D}(P_U^{\mathcal{W}} \| P_Z^{\mathcal{C}}) \stackrel{(a)}{=} \sum_{i \in \mathcal{B}} Q(i) \, \mathsf{D}(P_{S_i} \| P_Z)$$
(56)

$$\stackrel{(b)}{=} \sum_{i \in \mathcal{B}} Q(i) \{ C \operatorname{E}[\Delta v(S_i)] - \operatorname{H}(P_{S_i}) \}$$
(57)

$$\stackrel{(c)}{=} C E[v(Y)] - H(P_U^{\mathcal{W}}).$$
(58)

Equality (a) follows by the Leaf Divergence Lemma, (b) follows by (54), and (c) follows by the LANSIT and the Leaf Entropy Lemma. Thus, we have

$$R = \frac{\mathsf{H}(P_U^{\mathcal{W}})}{\mathsf{E}[v(Y)]} = C - \frac{\mathsf{D}(P_U^{\mathcal{W}} \| P_Z^{\mathcal{C}})}{\mathsf{E}[v(Y)]}.$$
(59)

Maximizing the rate and equivalently, minimizing the informational divergence per expected codeword length over the dictionary \mathcal{W} and the codebook \mathcal{C} is difficult and no efficient algorithm is known.

55 / 64

Fixed Codebook

We fix the codebook. The remaining problem is to minimize

$$\frac{\mathsf{D}(P_U^{\mathcal{W}} \| P_Z)}{\mathsf{E}[v(Y)]} \tag{60}$$

over the dictionary \mathcal{W} .

Equivalent Problem

Suppose we would know the minimimum δ , that is

$$\frac{\mathsf{D}(P_U^{\mathcal{W}} \| P_Z)}{\mathsf{E}[v(Y)]} \ge \delta \tag{61}$$

with equality, if $\ensuremath{\mathcal{W}}$ is optimal. Equivalent are

$$\mathsf{D}(P_U^{\mathcal{W}} \| P_Z) \ge \delta \mathsf{E}[v(Y)] \tag{62}$$

$$\Leftrightarrow \mathsf{D}(P_U^{\mathcal{W}} \| P_Z) - \delta \mathsf{E}[v(Y)] \ge 0$$
(63)

$$\Leftrightarrow \sum_{a \in \mathcal{W}} P_U^{\mathcal{W}}(a) \left[\log_2 \frac{P_U^{\mathcal{W}}(a)}{P_Z(a)} - \delta v(a) \right] \ge 0$$
 (64)

$$\Leftrightarrow \sum_{a \in \mathcal{W}} P_U^{\mathcal{W}}(a) \log_2 \frac{P_U^{\mathcal{W}}(a)}{P_Z(a) 2^{\delta \nu(a)}} \ge 0$$
(65)

$$\Leftrightarrow \mathsf{D}(P_U^{\mathcal{W}} \| P_Z \circ 2^{\delta v}) \ge 0.$$
 (66)

57 / 64

Geometric Huffman Coding⁴

By (66), we know that we must minimize $D(P_U^{\mathcal{W}} || T)$ for $T = P_Z \circ 2^{\delta v}$. T is a non-negative function on \mathcal{Z} , but not necessarily a distribution. *Geometric Huffman Coding* calculates the optimal dictionary \mathcal{W} . The algorithm is similar to Huffman Coding.

- ► Let T(a) ≥ T(b) be the smallest function values. We distinguish to cases.
 - 1. $T(a) \ge 4T(b)$. We simply remove b.
 - 2. T(a) < 4T(b). We connect *a* and *b* in a common predecessor *e*. We assign $T(e) = 2\sqrt{T(a)T(b)}$.

We repeat this procedure until we are left with one node only, which is the root of the constructed tree. The constructed tree is the optimal dictionary \mathcal{W} .

⁴Proof of optimality is given in [4] and [5, Section 3.2.3]. See also [6].

Finding $\delta^{\rm 5}$

The following algorithm finds δ and the optimal dictionary W. Normalized Geometric Huffman Coding

$$\hat{\mathcal{W}} \leftarrow \operatorname{argmin} \mathsf{D}(P_U^{\mathcal{W}} \| P_Z)$$
repeat

$$\hat{\delta} \leftarrow \frac{\mathsf{D}(P_U^{\hat{\mathcal{W}}} \| P_Z)}{\mathsf{E}[v(Y)]}$$

$$\hat{\mathcal{W}} \leftarrow \operatorname{argmin} \mathsf{D}(P_U^{\mathcal{W}} \| P_Z \circ 2^{\delta v})$$
until

$$\hat{\delta} = \frac{\mathsf{D}(P_U^{\hat{\mathcal{W}}} \| P_Z)}{\mathsf{E}[v(Y)]}$$

$$\delta \leftarrow \hat{\delta}, \mathcal{W} \leftarrow \hat{\mathcal{W}}$$

⁵The proof of optimality is provided in [5, Section 4.1.1].

59 / 64

Outline

Probability and Information Measures

Rooted Trees with Probabilities

Distribution Matching

Data Compression

Coding for Noiseless Channels

Further Reading

References

Further Reading

- Data compression with fixed code: Tunstall Coding [7],[8, Section 2.3.4].
- Distribution matching with fixed dictionary [9].

Outline

Probability and Information Measures

Rooted Trees with Probabilities

Distribution Matching

Data Compression

Coding for Noiseless Channels

Further Reading

References

References I

- R. A. Rueppel and J. L. Massey, "Leaf-average node-sum interchanges in rooted trees with applications," in *Communications and Cryptography: Two sides of One Tapestry*, R. E. Blahut, D. J. Costello Jr., U. Maurer, and T. Mittelholzer, Eds. Kluwer Academic Publishers, 1994.
- [2] G. Böcherer and R. A. Amjad, "Informational divergence and entropy rate on rooted trees with probabilities," in *IEEE Int. Symp. Inf. Theory (ISIT)*, 2014. [Online]. Available: http://arxiv.org/abs/1310.2882
- [3] D. A. Huffman, "A method for the construction of minimum-redundancy codes," *Proc. IRE*, vol. 40, no. 9, pp. 1098–1101, Sep. 1952.
- [4] G. Böcherer and R. Mathar, "Matching dyadic distributions to channels," in *Proc. Data Compression Conf.*, 2011, pp. 23–32.

63 / 64

References II

- [5] G. Böcherer, "Capacity-achieving probabilistic shaping for noisy and noiseless channels," Ph.D. dissertation, RWTH Aachen University, 2012. [Online]. Available: http://www.georg-boecherer.de/capacityAchievingShaping.pdf
- [6] —, "Geometric Huffman coding," http://www.georg-boecherer.de/ghc, Dec. 2010.
- [7] B. Tunstall, "Synthesis of noiseless compression codes," Ph.D. dissertation, 1967.
- [8] J. L. Massey, "Applied digital information theory I," lecture notes, ETH Zurich. [Online]. Available: http://www.isiweb.ee.ethz.ch/archive/massey_scr/adit1.pdf
- [9] R. A. Amjad and G. Böcherer, "Fixed-to-variable length distribution matching," in *IEEE Int. Symp. Inf. Theory (ISIT)*, 2013. [Online]. Available: http://arxiv.org/abs/1302.0019