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Logarithm

The binary logarithm and the natural logarithm are defined as

log2 x = a ⇔ 2a = x , ln x = a ⇔ ea = x . (1)

Problem 1.

1. For which real numbers x is the logarithm defined?

2. Express log2 x by the natural logarithm.

3. Use the definition of the binary logarithm to derive the
following identities.

log2(xy) = log2 x + log2 y (2)

x log2 y = log2(y x) (3)

− log2 x = log2
1

x
. (4)
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Logarithm

Problem 2.

1. The derivative of the natural logarithm is ∂ ln x
∂x = 1

x . Use it to

calculate ∂ log2 x
∂x . Express your result in terms of the binary

logarithm.

2. Show that

log2 x ≤ (x − 1) log2 e. (5)

When does equality hold?
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Random Variables

I Random variable X .

I Alphabet X = {x1, x2, . . . , xn}.
I Distribution PX : X → R, a 7→ PX (a) = Pr{X = a} and

∀a ∈ X : PX (a) ≥0 (6)∑
a∈X

PX (a) =1. (7)

I Support: suppPX = {a ∈ X : PX (a) > 0}.
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Joint Distribution

I Let X ,Y be two random variables with joint distribution
PXY : X × Y → R.

I The marginal distributions of X and Y are

PX (a) =
∑
b∈Y

PXY (a, b), PY (b) =
∑
a∈X

PXY (a, b). (8)

I If PY (b) > 0, then the distribution of X conditioned on Y is

PX |Y (a|b) =
PXY (a, b)

PY (b)
. (9)
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Joint and conditional distributions: Problems

Problem 3.

1. Show that for each b ∈ suppPY , PX |Y (·|b) is a distribution.

2. Show that if PX (a) = 0 then PXY (a, b) = 0 for all b ∈ Y.

3. Let PY (b) = 0. Show that the identity

PX |Y (a|b)PY (b) = PXY (a, b) (10)

holds for each a ∈ X and each choice of PX |Y (·|b).
Consequently, for PY (b) = 0, we can freely choose PX |Y (·|b).
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Expectation

I Let X be a random variable and consider the real-valued
function f : X → R. The expectation of f (X ) is defined as

E[f (X )] :=
∑

a∈suppPX

PX (a)f (a). (11)

I If X ⊂ R, then E(X ) is defined and called the expectation of
X .
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Informational Divergence

The informational divergence of two distributions PX and PY with
X = Y is

D(PX‖PY ) =
∑

a∈suppPX

PX (a) log2
PX (a)

PY (a)
= E

[
log2

PX (X )

PY (X )

]
(12)
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Informational divergence: Problems

Problem 4.

1. Show that

0
(a)

≤ D(PX‖PY ). (13)

Hint: Use log2 x ≤ (x − 1) log2 e.

2. When does equality hold in (a)?

3. Provide an example where D(PX‖PY ) 6= D(PY ‖PX ).

11 / 64

Entropy

The entropy of a random variable X is

H(PX ) :=
∑

a∈suppPX

PX (a)[− log2 PX (a)] = E[− log2 PX (X )]. (14)
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Entropy: Problems

Problem 5.

1. Let PX be some distribution on X and let PU be the uniform
distribution on X . Show that

H(PX ) = log2 |X | − D(PX‖PU). (15)

2. Show that

0
(a)

≤ H(PX )
(b)

≤ log2 |X |. (16)

3. When does equality hold in (a) and when does equality hold
in (b)?
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Rooted Trees: Example
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Rooted trees: Nodes

I A node is connected by a directed edge with its sucessors.

I A node without sucessors is a leaf.

I A node with successors is a branching node.

I All node except one have exactly one predecessor.

I The node without predecessor is the root.

I The depth of a node is the number of edges on the path from
the root to the node.
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Node enumeration

We use the following convention:

I The root has number 1.

I The node numbers increase with increasing depth.

I Leafs have smaller numbers than branching nodes of the same
depth.

Problem 6. Suppose a binary rooted tree has n leaves. What is the
number of branching nodes? What is the total number of nodes?
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Paths and path length

I A sequence of edges connecting the root with a leave is called
a path.

I The number of edges in a path is the path length.

I The path length is equal to the depth of the corresponding
leaf.
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Node Classes

For a rooted tree, we define the following node classes:

I N : all nodes.

I L: leaves.

I Li : leaves reachable from node i .

I B = N \ L: branching nodes.
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Node Classes: Example

I N = {1, 2, 3, 5, 6, 7}
I L = {2, 4, 6, 7}
I L3 = {4, 6, 7}
I B = N \ L = {1, 3, 5}

1

3

5

7

6

4

2
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Leaf Distribution

Problem 7. Let L be a random variable with alphabet L and
distribution Q.

1. What is the probability that a path that ends in L passes
through node i? We denote this probability by Q(i).

2. Let t be the minimal leaf depth and s ≤ t. Show that Q
defines a distribution on the nodes of depth s.

3. Let Si be the successors of i . Suppose a path to L crosses i .
What is the probability that it crosses a ∈ Si? We denote this
branching distribution by PSi the corresponding random
number by Si .
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Example

Leaf distribution: Q(2) = 1
4 , Q(4) = 0, Q(6) = 1

4 , Q(7) = 1
2 .

I Q(3) =
∑
i∈L3

Q(i) = 0 + 1
4 + 1

2 = 3
4

I S1 = {2, 3}
I P1(3) = Q(2)

Q(1)

Q(1) = 1

Q(3) = 3
4

Q(5) = 3
4

Q(7) = 1
2

PS5 (7) = 2
3

Q(6) = 1
4PS5

(6) =
1
3

PS3 (5) = 1

Q(4) = 0
PS3

(4) = 0

PS1 (3) = 3
4

Q(2) = 1
4PS1

(2) =
1
4
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Edge Labels

A tree with edge labels in X is defined as follows:

I Each node has |X | sucessors.

I We label the edges emerging from a branching node by the
letters in X .

I We define x(i) as the label of the edge that ends in node i .

I The labels of paths through the tree form the set W of words
with letters in X .
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Edge labels: Example

Consider the binary labels X = {0, 1}.
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3

5
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1

40
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20
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Branching Distribution

I A label distribution PX can be used to define a branching
distribution:

j ∈ B, i ∈ Sj : PSj (i) = PX [x(i)]. (17)

I PX also defines a distribution on the words defined by the
tree, namely

PWX (a) = PX (a1) · · ·PX (a`(a)), a ∈ W. (18)
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LANSIT1

I Let f be a real-valued function on the nodes N .

I For each node i ∈ N \ 1, define
∆f (i) := f (i)− f (predecessor of i).

I Let Si be a random variable with alphabet Si and distribution
PSi .

Proposition 1 (LANSIT)

E[f (L)]− f (1) =
∑
j∈B

Q(j) E[∆f (Sj)] (19)

1Leaf-Average Node-Sum Interchange Theorem [1].
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LANSIT: Proof

I Consider a tree with nodes N .

I Let Sj ⊆ L be a set of leaves with common predecessor j .∑
i∈Sj

Q(i)f (i) =
∑
i∈Sj

Q(j)PSj (i)
[
f (i)− f (j) + f (j)

]
(20)

= Q(j)f (j)
[∑
i∈Sj

PSj (i)︸ ︷︷ ︸
=1

]
+ Q(j)

∑
i∈Sj

PSj (i)∆f (i) (21)

= Q(j)f (j) + Q(j) E[∆f (Sj)] (22)

I N ← N \ Sj is a new tree with fewer leaves. The node
probabilities are still defined via Q.

I Repeat the procedure until j has become the root node 1.
Then Q(j = 1) = 1 and Q(j = 1)f (j = 1) = f (1).

�
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LANSIT: Problems2

Problem 8. Use the LANSIT to show the following identities.

1. Path Length Lemma. Function `(i) := node depth of i .

E[`(L)] =
∑
i∈B

Q(i). (23)

2. Leaf Entropy Lemma. Function f (i) = − log2Q(i).

H(PL) =
∑
i∈B

Q(i) H(PSi ). (24)

3. Leaf Divergence Lemma. Let Q ′ be another node
distribution with corresponding leaf distribution PL′ . Function
f (i) = log2

Q(i)
Q′(i) . Then

D(PL‖PL′) =
∑
i∈B

Q(i) D(PSi‖PS ′i
). (25)

2See [2].
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LANSIT: Aufgaben

Problem 9.

1. Verify the lemmas for Path Length, Leaf Entropy, and Leaf
Divergence by calculating for example trees separately the
left-hand and the right-hand sides of the identities.
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Complete Trees

I A binary tree is complete, if each node has either 2 or no
successors.

I A tree with edge labels X is complete if each node has either
|X | or no successors.
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Permissible Path Lengths

Let `1, `2, . . . , `n be path lengths. We want to develop a test, by
which we can check, whether or not a complete binary tree with
these path lengths exists. Let `max = maxi `i . Consider a complete
tree, where all paths have length `max.

I The tree has 2`max nodes with depth `max.

I A node with depth ` ≤ `max has 2`max−` successors with depth
`max.

I We have

n∑
i=1

2−`i = 2−`max

n∑
i=1

2`max−`i

︸ ︷︷ ︸
(?)

(26)

The sum (?) is equal to 2`max , if the `i are path lengths of a
complete tree.
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Kraft-Inequality

We now have the following test. Let `1, `2, . . . , `n be positive
integers.

I
∑n

i=1 2−`i = 1⇒ a complete binary tree exists with path
lengths `i .

I
∑n

i=1 2−`i < 1⇒ an incomplete binary exists with path
lengths `i .

I
∑n

i=1 2−`i > 1⇒ neither a complete nor an incomplete binary
tree exists with path lengths `i .

For non-binary labels X with |X | = D > 2, we test
∑n

i=1D
−`i .
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Discrete Memoryless Source

I A discrete memoryless source PX generates random variables
X1X2X3 · · · , which are stochastically independent and
identically distributed according to PX .

I Let n > 0. We denote X n := X1X2 · · ·Xn. We have

Pr(X n = an) = PX (a1)PX (a2) · · ·PX (an) (27)

for all an ∈ X n = X × · · · × X .
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LANSIT: Problems

Problem 10. Let X n and Y n be random vectors. Use the LANSIT
to show the following chain rules.

1. Entropy chain rule:

H(PX n) =
n∑

i=1

H(PXi |X i−1 |PX i−1) (28)

2. Informational divergence chain rule:

D(PX n‖PY n) =
n∑

i=1

D(PXi |X i−1‖PYi |X i−1 |PX i−1) (29)
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Distrbution Matcher

A distribution matcher transforms an input sequence into an
output sequence:

PX → X1X2 · · · → Distribution Matcher → Y1Y2 · · ·

The output is a sequence of letters in Z, and the frequency by
which the letters occur in the output sequence should resemble a
target distribution PZ .
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Dictionary and Codebook

I Dicionary:
I The input letter alphabet is X
I The path labels of a complete tree with labels in X form a

dictionary W.
I Example: X = {a, b, c}, W = {a, b, ca, cb, cc}.

I Codebook:
I The output letter alphabet is Z
I The path labels of a complete tree with labels in Z form a

codebook.
I Example: Z = {0, 1}, C = {0, 100, 101, 110, 111}. C is a

binary codebook.
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Parsing the Input

I We parse the input by a dictionary W with letters in X .

I This generates words W with distribution PWX given by

PWX (w) = PX (w1)PX (w2) · · ·PX (w`(w)), für jedes w ∈ W.

(30)

Problem 11. Using the LANSIT, show that

H(PWX ) = E[`(W )] H(PX ) (31)
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Output of Codewords

We choose as output codewords in C with letters in Z. The DM
maps the parsed words to codewords by an injective function
f : W → C. Let Y = f (W ) denote the codeword at the DM
output.

I The expected codeword length is E[`(Y )].

I The codeword target distribution is

PCZ (y) = PZ (y1)PZ (y2) . . .PZ (y`(y)), for all y ∈ C. (32)

I The actual distribution of Y is

PY (y) =

{
PWX [f −1(y)] if ∃w : f (w) = y ,

0 otherwise.
(33)
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Variable length code: Problem

Problem 12. Let PZ (0) = PZ (1) = 1
2 be the target distribution

and let C = {0, 10, 11} be the codebook. Suppose the actual
distribution is PY (0) = PY (10) = PY (11) = 1

3 .

1. Calculate the target codeword distribution.

2. Calculate the expected codeword length.
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Rate

I The DM Rate R is given by

average amount of information

average output length
(34)

that is

R :=
H(PWX )]

E[`(Y )]
. (35)
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The function f : W → C

We index the dictionary W = {w1,w2, . . . ,wn} and the codebook
C = {c1, c2, . . . , cm} with m ≥ n so that

PWX (w1) ≥ PWX (w2) ≥ · · · ≥ PWX (wn), (36)

PCZ (c1) ≥ PCZ (c2) ≥ · · · ≥ PWZ (cm). (37)

We then define f by f : wi 7→ ci , that is, we map words of smaller
probability to codewords of smaller target probability.
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Design Objective

For a given DMS PX , we want to maximize the rate

R =
H(PWX )]

E[`(Y )]
(38)

for a binary output alphabet.
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Informational Divergence

We choose as target distribution the uniform distribution PU on
Z = {0, 1} and we evaluate the informational divergence.

D(PWX ‖PCU)
(a)
=
∑
j∈B

Q(j) D(PSj‖PU) (39)

=
∑
j∈B

Q(j)

∑
a∈Sj

PSj (a) log2
PSj (a)

1
2

 (40)

=
∑
j∈B

Q(j)
[
1− H(PSj )

]
(41)

(b)
= E[`(Y )]− H(PWX ). (42)

Equality (a) follows by the Leaf Divergence Lemma and (b) by the
Path Length Lemma and the Leaf Entropy Lemma. Q(j) are node
probabilities for the codebook tree C with leaf distribution PWX .
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Limits

I Rate:

H(PWX )

E[`(Y )]
= 1−

D(PWX ‖PCU)

E[`(Y )]
≤ 1. (43)

I Expected codeword length:

E[`(Y )] = H(PWX ) + D(PWX ‖PCU) ≥ H(PWX ). (44)

We can either maximize the rate or minimize the minimize the
informational divergence per output bit, over all dicionaries W and
all codes C. No efficient algorithm is known!
Note: we achieve the maximum rate, if D(PWX ‖PCU) = 0, the
uniform target distribution PU that we chose before indeed
maximizes the rate!
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Huffman Coding

For Huffman Coding, we fix the dicionary W = X . The limits are
now

I Rate:

H(PX )

E[`(Y )]
= 1−

D(PX‖PCU)

E[`(Y )]
≤ 1. (45)

I Expected codeword length:

E[`(Y )] = H(PX ) + D(PX‖PCU) ≥ H(PX ). (46)

To maximize the rate, we can now either minimize the expected
codeword length or the informational divergence.
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Huffman Coding3

I The remaining problem: Choose C, so that the expected
output length

E[`(Y )] =
∑
x∈X

PX (x)`[f (x)] (47)

is minimized.

3See [3].
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Huffman Coding: Problem

For notational simplicity, we denote the probabilities by
p1, p2, . . . , pn and the expected output lengths by `1, `2, . . . , `n.
Problem 13. Show the following properties of an optimal code.

1. If pi < pj then `i ≥ `j .
2. An optimal codebook is complete.

3. Suppose p1 ≥ p2 ≥ · · · ≥ pn−1 ≥ pn. Then there exists an
optimal codebook with

`n = `n−1 = max
i
`i , (48)

that is, the leaves with the lengths `n, `n−1 are siblings with a
common predecessor.
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Huffman Coding: the algorithm

Suppose the path lengths are optimal and fulfill (48). Let L be a
random variable on the leaves. The lengths
`1, `2, . . . , `n−2, `n−1 − 1 are path lengths of a new tree with the
predecessor of the leaves with lengths `n, `n−1 as new leaf. The
new leaf has probability pn + pn−1. The new tree has n − 1 leaves.
Let L′ be a random variable on the leaves of the new tree.
Because of the Path Length Lemma, we have

E[`(L)] = E[`(L′)] + pn + pn−1. (49)

Because the path lengths of the tree with n leaves is optimal, the
path lengths of the new tree with n − 1 leaves must also be
optimal, that is, it must minimize E[`(L′)]. We then therefore
construct the optimal tree, by recursively connecting the leaves of
smallest probability to a common predecessor.
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Problem Statement

I At the input, we have independent and uniformly distributed
bits PU .

I The output letters a ∈ Z have different lengths v(a). The
values v(a) are positive real number, but not necessarily
integers.

I We want to transmit at maximum rate.

I The length function v defines a discrete noiseless channel.
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Target distribution

Define the target distribution PZ as

PZ (a) = 2−Cv(a), for each a ∈ Z (50)

where C is chosen such that∑
a∈Z

2−Cv(a) = 1. (51)
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Zielverteilung

We develop the informational divergence:

D(PY ‖PZ ) =
∑
a∈Z

PY (a) log2
PY (a)

2−Cv(a)
(52)

= C
∑
a∈Z

PY (a)v(a)− H(PY ) (53)

= C E[v(Y )]− H(PY ). (54)

Cosequently, we have

R =
H(PY )

E[v(Y )]
= C − D(PY ‖PZ )

E[v(Y )]
. (55)

Thus, C is the maximum rate (also called capacity of the noiseless
channel v) and it is reached, if PY = PZ . This shows that the PZ

chosen by us is indeed optimal.
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Distribution Matching
We develop the informational divergence.

D(PWU ‖PCZ )
(a)
=
∑
i∈B

Q(i) D(PSi‖PZ ) (56)

(b)
=
∑
i∈B

Q(i){C E[∆v(Si )]− H(PSi )} (57)

(c)
= C E[v(Y )]− H(PWU ). (58)

Equality (a) follows by the Leaf Divergence Lemma, (b) follows by
(54), and (c) follows by the LANSIT and the Leaf Entropy Lemma.
Thus, we have

R =
H(PWU )

E[v(Y )]
= C −

D(PWU ‖PCZ )

E[v(Y )]
. (59)

Maximizing the rate and equivalently, minimizing the informational
divergence per expected codeword length over the dictionary W
and the codebook C is difficult and no efficient algorithm is known.

55 / 64

Fixed Codebook

We fix the codebook. The remaining problem is to minimize

D(PWU ‖PZ )

E[v(Y )]
(60)

over the dictionary W.
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Equivalent Problem

Suppose we would know the minimimum δ, that is

D(PWU ‖PZ )

E[v(Y )]
≥ δ (61)

with equality, if W is optimal. Equivalent are

D(PWU ‖PZ ) ≥ δ E[v(Y )] (62)

⇔ D(PWU ‖PZ )− δ E[v(Y )] ≥ 0 (63)

⇔
∑
a∈W

PWU (a)

[
log2

PWU (a)

PZ (a)
− δv(a)

]
≥ 0 (64)

⇔
∑
a∈W

PWU (a) log2
PWU (a)

PZ (a)2δv(a)
≥ 0 (65)

⇔ D(PWU ‖PZ ◦ 2δv ) ≥ 0. (66)
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Geometric Huffman Coding4

By (66), we know that we must minimize D(PWU ‖T ) for
T = PZ ◦ 2δv . T is a non-negative function on Z, but not
necessarily a distribution. Geometric Huffman Coding calculates
the optimal dictionary W. The algorithm is similar to Huffman
Coding.
I Let T (a) ≥ T (b) be the smallest function values. We

distinguish to cases.

1. T (a) ≥ 4T (b). We simply remove b.
2. T (a) < 4T (b). We connect a and b in a common predecessor

e. We assign T (e) = 2
√
T (a)T (b).

We repeat this procedure until we are left with one node only,
which is the root of the constructed tree. The constructed tree is
the optimal dictionary W.

4Proof of optimality is given in [4] and [5, Section 3.2.3]. See also [6].
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Finding δ5

The following algorithm finds δ and the optimal dictionary W.
Normalized Geometric Huffman Coding

Ŵ ← argmin
W

D(PWU ‖PZ )

repeat

δ̂ ← D(PŴU ‖PZ )
E[v(Y )]

Ŵ ← argmin
W

D(PWU ‖PZ ◦ 2δv )

until δ̂ =
D(PŴU ‖PZ )
E[v(Y )]

δ ← δ̂,W ← Ŵ

5The proof of optimality is provided in [5, Section 4.1.1].
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Further Reading

I Data compression with fixed code: Tunstall Coding [7],[8,
Section 2.3.4].

I Distribution matching with fixed dictionary [9].
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[5] G. Böcherer, “Capacity-achieving probabilistic shaping for noisy
and noiseless channels,” Ph.D. dissertation, RWTH Aachen
University, 2012. [Online]. Available:
http://www.georg-boecherer.de/capacityAchievingShaping.pdf

[6] ——, “Geometric Huffman coding,”
http://www.georg-boecherer.de/ghc, Dec. 2010.

[7] B. Tunstall, “Synthesis of noiseless compression codes,” Ph.D.
dissertation, 1967.

[8] J. L. Massey, “Applied digital information theory I,” lecture
notes, ETH Zurich. [Online]. Available:
http://www.isiweb.ee.ethz.ch/archive/massey scr/adit1.pdf
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