Lecture Nodes on Variable Length Coding

Georg Böcherer

www.georg-boecherer.de Email: mail@georg-boecherer.de

2016

Contents

Probability and Information MeasuresRooted Trees with Probabilities
Distribution Matching
Data Compression
Coding for Noiseless Channels
Further Reading
References

Outline

Probability and Information Measures

Rooted Trees with Probabilities
Distribution Matching
Data Compression

Coding for Noiseless Channels

Further Reading

References

Logarithm

The binary logarithm and the natural logarithm are defined as

$$
\begin{equation*}
\log _{2} x=a \Leftrightarrow 2^{a}=x, \quad \ln x=a \Leftrightarrow e^{a}=x \tag{1}
\end{equation*}
$$

Problem 1.

1. For which real numbers x is the logarithm defined?
2. Express $\log _{2} x$ by the natural logarithm.
3. Use the definition of the binary logarithm to derive the following identities.

$$
\begin{align*}
\log _{2}(x y) & =\log _{2} x+\log _{2} y \tag{2}\\
x \log _{2} y & =\log _{2}\left(y^{x}\right) \tag{3}\\
-\log _{2} x & =\log _{2} \frac{1}{x} \tag{4}
\end{align*}
$$

Problem 2.

1. The derivative of the natural logarithm is $\frac{\partial \ln x}{\partial x}=\frac{1}{x}$. Use it to calculate $\frac{\partial \log _{2} x}{\partial x}$. Express your result in terms of the binary logarithm.
2. Show that

$$
\begin{equation*}
\log _{2} x \leq(x-1) \log _{2} e \tag{5}
\end{equation*}
$$

When does equality hold?

- Random variable X.
- Alphabet $\mathcal{X}=\left\{x_{1}, x_{2}, \ldots, x_{n}\right\}$.
- Distribution $P_{X}: \mathcal{X} \rightarrow \mathbf{R}, a \mapsto P_{X}(a)=\operatorname{Pr}\{X=a\}$ and

$$
\begin{align*}
\forall a \in \mathcal{X}: P_{X}(a) & \geq 0 \tag{6}\\
\sum_{a \in \mathcal{X}} P_{X}(a) & =1 \tag{7}
\end{align*}
$$

- Support: $\operatorname{supp} P_{X}=\left\{a \in \mathcal{X}: P_{X}(a)>0\right\}$.

Joint Distribution

- Let X, Y be two random variables with joint distribution $P_{X Y}: \mathcal{X} \times \mathcal{Y} \rightarrow \mathbf{R}$.
- The marginal distributions of X and Y are

$$
\begin{equation*}
P_{X}(a)=\sum_{b \in \mathcal{Y}} P_{X Y}(a, b), \quad P_{Y}(b)=\sum_{a \in \mathcal{X}} P_{X Y}(a, b) \tag{8}
\end{equation*}
$$

- If $P_{Y}(b)>0$, then the distribution of X conditioned on Y is

$$
\begin{equation*}
P_{X \mid Y}(a \mid b)=\frac{P_{X Y}(a, b)}{P_{Y}(b)} \tag{9}
\end{equation*}
$$

Joint and conditional distributions: Problems

Problem 3.

1. Show that for each $b \in \operatorname{supp} P_{Y}, P_{X \mid Y}(\cdot \mid b)$ is a distribution.
2. Show that if $P_{X}(a)=0$ then $P_{X Y}(a, b)=0$ for all $b \in \mathcal{Y}$.
3. Let $P_{Y}(b)=0$. Show that the identity

$$
\begin{equation*}
P_{X \mid Y}(a \mid b) P_{Y}(b)=P_{X Y}(a, b) \tag{10}
\end{equation*}
$$

holds for each $a \in \mathcal{X}$ and each choice of $P_{X \mid Y}(\cdot \mid b)$.
Consequently, for $P_{Y}(b)=0$, we can freely choose $P_{X \mid Y}(\cdot \mid b)$.

Expectation

- Let X be a random variable and consider the real-valued function $f: \mathcal{X} \rightarrow \mathbf{R}$. The expectation of $f(X)$ is defined as

$$
\begin{equation*}
\mathrm{E}[f(X)]:=\sum_{a \in \operatorname{supp} P_{X}} P_{X}(a) f(a) \tag{11}
\end{equation*}
$$

- If $\mathcal{X} \subset \mathbf{R}$, then $\mathrm{E}(X)$ is defined and called the expectation of X.

Informational Divergence

The informational divergence of two distributions P_{X} and P_{Y} with $\mathcal{X}=\mathcal{Y}$ is

$$
\begin{equation*}
\mathrm{D}\left(P_{X} \| P_{Y}\right)=\sum_{a \in \text { supp } P_{X}} P_{X}(a) \log _{2} \frac{P_{X}(a)}{P_{Y}(a)}=E\left[\log _{2} \frac{P_{X}(X)}{P_{Y}(X)}\right] \tag{12}
\end{equation*}
$$

Problem 4.

1. Show that

$$
\begin{equation*}
0 \stackrel{(a)}{\leq} \mathrm{D}\left(P_{X} \| P_{Y}\right) . \tag{13}
\end{equation*}
$$

Hint: Use $\log _{2} x \leq(x-1) \log _{2} e$.
2. When does equality hold in (a)?
3. Provide an example where $\mathrm{D}\left(P_{X} \| P_{Y}\right) \neq \mathrm{D}\left(P_{Y} \| P_{X}\right)$.

Entropy

The entropy of a random variable X is

$$
\begin{equation*}
\mathrm{H}\left(P_{X}\right):=\sum_{a \in \operatorname{supp} P_{X}} P_{X}(a)\left[-\log _{2} P_{X}(a)\right]=\mathrm{E}\left[-\log _{2} P_{X}(X)\right] . \tag{14}
\end{equation*}
$$

Entropy: Problems

Problem 5.

1. Let P_{X} be some distribution on \mathcal{X} and let P_{U} be the uniform distribution on \mathcal{X}. Show that

$$
\begin{equation*}
\mathrm{H}\left(P_{X}\right)=\log _{2}|\mathcal{X}|-\mathrm{D}\left(P_{X} \| P_{U}\right) \tag{15}
\end{equation*}
$$

2. Show that

$$
0 \stackrel{(\mathrm{a})}{\leq} \mathrm{H}\left(P_{X}\right) \stackrel{(\mathrm{b})}{\leq} \log _{2}|\mathcal{X}| .
$$

3. When does equality hold in (a) and when does equality hold in (b)?
Probability and Information Measures
Rooted Trees with Probabilities
Distribution Matching
Data Compression
Coding for Noiseless Channels
Further Reading

Rooted Trees: Example

Rooted trees: Nodes

- A node is connected by a directed edge with its sucessors.
- A node without sucessors is a leaf.
- A node with successors is a branching node.
- All node except one have exactly one predecessor.
- The node without predecessor is the root.
- The depth of a node is the number of edges on the path from the root to the node.

Node enumeration

We use the following convention:

- The root has number 1 .
- The node numbers increase with increasing depth.
- Leafs have smaller numbers than branching nodes of the same depth.
Problem 6. Suppose a binary rooted tree has n leaves. What is the number of branching nodes? What is the total number of nodes?

Paths and path length

- A sequence of edges connecting the root with a leave is called a path.
- The number of edges in a path is the path length.
- The path length is equal to the depth of the corresponding leaf.

Node Classes

For a rooted tree, we define the following node classes:

- \mathcal{N} : all nodes.
- \mathcal{L} : leaves.
- \mathcal{L}_{i} : leaves reachable from node i.
- $\mathcal{B}=\mathcal{N} \backslash \mathcal{L}$: branching nodes.

Node Classes: Example

- $\mathcal{N}=\{1,2,3,5,6,7\}$
- $\mathcal{L}=\{2,4,6,7\}$
- $\mathcal{L}_{3}=\{4,6,7\}$
- $\mathcal{B}=\mathcal{N} \backslash \mathcal{L}=\{1,3,5\}$

Leaf Distribution

Problem 7. Let L be a random variable with alphabet \mathcal{L} and distribution Q.

1. What is the probability that a path that ends in L passes through node i ? We denote this probability by $Q(i)$.
2. Let t be the minimal leaf depth and $s \leq t$. Show that Q defines a distribution on the nodes of depth s.
3. Let \mathcal{S}_{i} be the successors of i. Suppose a path to L crosses i. What is the probability that it crosses $a \in \mathcal{S}_{i}$? We denote this branching distribution by $P_{S_{i}}$ the corresponding random number by S_{i}.

Example

Leaf distribution: $Q(2)=\frac{1}{4}, Q(4)=0, Q(6)=\frac{1}{4}, Q(7)=\frac{1}{2}$.

- $Q(3)=\sum_{i \in \mathcal{L}_{3}} Q(i)=0+\frac{1}{4}+\frac{1}{2}=\frac{3}{4}$
- $\mathcal{S}_{1}=\{2,3\}$
- $P_{1}(3)=\frac{Q(2)}{Q(1)}$

Edge Labels

A tree with edge labels in \mathcal{X} is defined as follows:

- Each node has $|\mathcal{X}|$ sucessors.
- We label the edges emerging from a branching node by the letters in \mathcal{X}.
- We define $x(i)$ as the label of the edge that ends in node i.
- The labels of paths through the tree form the set \mathcal{W} of words with letters in \mathcal{X}.

Edge labels: Example

Consider the binary labels $\mathcal{X}=\{0,1\}$.

Branching Distribution

- A label distribution P_{X} can be used to define a branching distribution:

$$
\begin{equation*}
j \in \mathcal{B}, i \in \mathcal{S}_{j}: P_{S_{j}}(i)=P_{X}[x(i)] \tag{17}
\end{equation*}
$$

- P_{X} also defines a distribution on the words defined by the tree, namely

$$
\begin{equation*}
P_{X}^{\mathcal{W}}(a)=P_{X}\left(a_{1}\right) \cdots P_{X}\left(a_{\ell(a)}\right), \quad a \in \mathcal{W} . \tag{18}
\end{equation*}
$$

LANSIT ${ }^{1}$

- Let f be a real-valued function on the nodes \mathcal{N}.
- For each node $i \in \mathcal{N} \backslash 1$, define $\Delta f(i):=f(i)-f($ predecessor of $i)$.
- Let S_{i} be a random variable with alphabet \mathcal{S}_{i} and distribution $P_{S_{i}}$.
Proposition 1 (LANSIT)

$$
\begin{equation*}
\mathrm{E}[f(L)]-f(1)=\sum_{j \in \mathcal{B}} Q(j) \mathrm{E}\left[\Delta f\left(S_{j}\right)\right] \tag{19}
\end{equation*}
$$

[^0]
LANSIT: Proof

- Consider a tree with nodes \mathcal{N}.
- Let $\mathcal{S}_{j} \subseteq \mathcal{L}$ be a set of leaves with common predecessor j.

$$
\begin{align*}
& \sum_{i \in \mathcal{S}_{j}} Q(i) f(i)=\sum_{i \in \mathcal{S}_{j}} Q(j) P_{S_{j}}(i)[f(i)-f(j)+f(j)] \tag{20}\\
& =Q(j) f(j)[\underbrace{\sum_{i \in \mathcal{S}_{j}} P_{S_{j}}(i)}_{=1}]+Q(j) \sum_{i \in \mathcal{S}_{j}} P_{S_{j}}(i) \Delta f(i) \tag{21}\\
& =Q(j) f(j)+Q(j) \mathrm{E}\left[\Delta f\left(S_{j}\right)\right] \tag{22}
\end{align*}
$$

$-\mathcal{N} \leftarrow \mathcal{N} \backslash \mathcal{S}_{j}$ is a new tree with fewer leaves. The node probabilities are still defined via Q.

- Repeat the procedure until j has become the root node 1 . Then $Q(j=1)=1$ and $Q(j=1) f(j=1)=f(1)$.

LANSIT: Problems ${ }^{2}$

Problem 8. Use the LANSIT to show the following identities.

1. Path Length Lemma. Function $\ell(i):=$ node depth of i.

$$
\begin{equation*}
\mathrm{E}[\ell(L)]=\sum_{i \in \mathcal{B}} Q(i) \tag{23}
\end{equation*}
$$

2. Leaf Entropy Lemma. Function $f(i)=-\log _{2} Q(i)$.

$$
\begin{equation*}
\mathrm{H}\left(P_{L}\right)=\sum_{i \in \mathcal{B}} Q(i) \mathrm{H}\left(P_{S_{i}}\right) \tag{24}
\end{equation*}
$$

3. Leaf Divergence Lemma. Let Q^{\prime} be another node distribution with corresponding leaf distribution $P_{L^{\prime}}$. Function $f(i)=\log _{2} \frac{Q(i)}{Q^{\prime}(i)}$. Then

$$
\begin{equation*}
\mathrm{D}\left(P_{L} \| P_{L^{\prime}}\right)=\sum_{i \in \mathcal{B}} Q(i) \mathrm{D}\left(P_{S_{i}} \| P_{S_{i}^{\prime}}\right) \tag{25}
\end{equation*}
$$

[^1]
LANSIT: Aufgaben

Problem 9.

1. Verify the lemmas for Path Length, Leaf Entropy, and Leaf Divergence by calculating for example trees separately the left-hand and the right-hand sides of the identities.

Complete Trees

- A binary tree is complete, if each node has either 2 or no successors.
- A tree with edge labels \mathcal{X} is complete if each node has either $|\mathcal{X}|$ or no successors.

Permissible Path Lengths

Let $\ell_{1}, \ell_{2}, \ldots, \ell_{n}$ be path lengths. We want to develop a test, by which we can check, whether or not a complete binary tree with these path lengths exists. Let $\ell_{\max }=\max _{i} \ell_{i}$. Consider a complete tree, where all paths have length $\ell_{\text {max }}$.

- The tree has $2^{\ell_{\max }}$ nodes with depth $\ell_{\max }$.
- A node with depth $\ell \leq \ell_{\max }$ has $2^{\ell_{\max }-\ell}$ successors with depth $\ell_{\text {max }}$.
- We have

$$
\begin{equation*}
\sum_{i=1}^{n} 2^{-\ell_{i}}=2^{-\ell_{\max }} \underbrace{\sum_{i=1}^{n} 2^{\ell_{\max }-\ell_{i}}}_{(\star)} \tag{26}
\end{equation*}
$$

The sum (\star) is equal to $2^{\ell_{\text {max }}}$, if the ℓ_{i} are path lengths of a complete tree.

Kraft-Inequality

We now have the following test. Let $\ell_{1}, \ell_{2}, \ldots, \ell_{n}$ be positive integers.

- $\sum_{i=1}^{n} 2^{-\ell_{i}}=1 \Rightarrow$ a complete binary tree exists with path lengths ℓ_{i}.
- $\sum_{i=1}^{n} 2^{-\ell_{i}}<1 \Rightarrow$ an incomplete binary exists with path lengths ℓ_{i}.
- $\sum_{i=1}^{n} 2^{-\ell_{i}}>1 \Rightarrow$ neither a complete nor an incomplete binary tree exists with path lengths ℓ_{i}.
For non-binary labels \mathcal{X} with $|\mathcal{X}|=D>2$, we test $\sum_{i=1}^{n} D^{-\ell_{i}}$.

Outline

Probability and Information Measures

Rooted Trees with Probabilities

Distribution Matching

Data Compression

Coding for Noiseless Channels

Further Reading

References

Discrete Memoryless Source

- A discrete memoryless source P_{X} generates random variables $X_{1} X_{2} X_{3} \cdots$, which are stochastically independent and identically distributed according to P_{X}.
- Let $n>0$. We denote $X^{n}:=X_{1} X_{2} \cdots X_{n}$. We have

$$
\begin{equation*}
\operatorname{Pr}\left(X^{n}=a^{n}\right)=P_{X}\left(a_{1}\right) P_{X}\left(a_{2}\right) \cdots P_{X}\left(a_{n}\right) \tag{27}
\end{equation*}
$$

for all $a^{n} \in \mathcal{X}^{n}=\mathcal{X} \times \cdots \times \mathcal{X}$.

LANSIT: Problems

Problem 10. Let X^{n} and Y^{n} be random vectors. Use the LANSIT to show the following chain rules.

1. Entropy chain rule:

$$
\begin{equation*}
H\left(P_{X^{n}}\right)=\sum_{i=1}^{n} H\left(P_{X_{i} \mid X^{i-1}} \mid P_{X^{i-1}}\right) \tag{28}
\end{equation*}
$$

2. Informational divergence chain rule:

$$
\begin{equation*}
D\left(P_{X^{n}} \| P_{Y^{n}}\right)=\sum_{i=1}^{n} D\left(P_{X_{i} \mid X^{i-1}} \| P_{Y_{i} \mid X^{i-1}} \mid P_{X^{i-1}}\right) \tag{29}
\end{equation*}
$$

Distrbution Matcher

A distribution matcher transforms an input sequence into an output sequence:

$$
P_{X} \rightarrow X_{1} X_{2} \cdots \rightarrow \text { Distribution Matcher } \rightarrow Y_{1} Y_{2} \cdots
$$

The output is a sequence of letters in \mathcal{Z}, and the frequency by which the letters occur in the output sequence should resemble a target distribution P_{Z}.

Dictionary and Codebook

- Dicionary:
- The input letter alphabet is \mathcal{X}
- The path labels of a complete tree with labels in \mathcal{X} form a dictionary \mathcal{W}.
- Example: $\mathcal{X}=\{a, b, c\}, \mathcal{W}=\{a, b, c a, c b, c c\}$.
- Codebook:
- The output letter alphabet is \mathcal{Z}
- The path labels of a complete tree with labels in \mathcal{Z} form a codebook.
- Example: $\mathcal{Z}=\{0,1\}, \mathcal{C}=\{0,100,101,110,111\} . \mathcal{C}$ is a binary codebook.

Parsing the Input

- We parse the input by a dictionary \mathcal{W} with letters in \mathcal{X}.
- This generates words W with distribution $P_{X}^{\mathcal{W}}$ given by

$$
\begin{equation*}
P_{X}^{\mathcal{W}}(w)=P_{X}\left(w_{1}\right) P_{X}\left(w_{2}\right) \cdots P_{X}\left(w_{\ell(w)}\right), \quad \text { für jedes } w \in \mathcal{W} . \tag{30}
\end{equation*}
$$

Problem 11. Using the LANSIT, show that

$$
\begin{equation*}
\mathrm{H}\left(P_{X}^{\mathcal{W}}\right)=\mathrm{E}[\ell(W)] \mathrm{H}\left(P_{X}\right) \tag{31}
\end{equation*}
$$

Output of Codewords

We choose as output codewords in \mathcal{C} with letters in \mathcal{Z}. The DM maps the parsed words to codewords by an injective function $f: \mathcal{W} \rightarrow \mathcal{C}$. Let $Y=f(W)$ denote the codeword at the DM output.

- The expected codeword length is $\mathrm{E}[\ell(Y)]$.
- The codeword target distribution is

$$
\begin{equation*}
P_{Z}^{\mathcal{C}}(y)=P_{Z}\left(y_{1}\right) P_{Z}\left(y_{2}\right) \ldots P_{Z}\left(y_{\ell(y)}\right), \quad \text { for all } y \in \mathcal{C} . \tag{32}
\end{equation*}
$$

- The actual distribution of Y is

$$
P_{Y}(y)= \begin{cases}P_{X}^{\mathcal{W}}\left[f^{-1}(y)\right] & \text { if } \exists w: f(w)=y \tag{33}\\ 0 & \text { otherwise }\end{cases}
$$

Variable length code: Problem

Problem 12. Let $P_{Z}(0)=P_{Z}(1)=\frac{1}{2}$ be the target distribution and let $\mathcal{C}=\{0,10,11\}$ be the codebook. Suppose the actual distribution is $P_{Y}(0)=P_{Y}(10)=P_{Y}(11)=\frac{1}{3}$.

1. Calculate the target codeword distribution.
2. Calculate the expected codeword length.

Rate

- The DM Rate R is given by

$$
\begin{equation*}
\frac{\text { average amount of information }}{\text { average output length }} \tag{34}
\end{equation*}
$$

that is

$$
\begin{equation*}
R:=\frac{\left.\mathrm{H}\left(P_{X}^{\mathcal{W}}\right)\right]}{\mathrm{E}[\ell(Y)]} \tag{35}
\end{equation*}
$$

The function $f: \mathcal{W} \rightarrow \mathcal{C}$

We index the dictionary $\mathcal{W}=\left\{w_{1}, w_{2}, \ldots, w_{n}\right\}$ and the codebook $\mathcal{C}=\left\{c_{1}, c_{2}, \ldots, c_{m}\right\}$ with $m \geq n$ so that

$$
\begin{align*}
& P_{X}^{\mathcal{W}}\left(w_{1}\right) \geq P_{X}^{\mathcal{W}}\left(w_{2}\right) \geq \cdots \geq P_{X}^{\mathcal{W}}\left(w_{n}\right) \tag{36}\\
& P_{Z}^{\mathcal{C}}\left(c_{1}\right) \geq P_{Z}^{\mathcal{C}}\left(c_{2}\right) \geq \cdots \geq P_{Z}^{\mathcal{W}}\left(c_{m}\right) \tag{37}
\end{align*}
$$

We then define f by $f: w_{i} \mapsto c_{i}$, that is, we map words of smaller probability to codewords of smaller target probability.

Outline

Probability and Information Measures

Rooted Trees with Probabilities

Distribution Matching

Data Compression

Coding for Noiseless Channels

Further Reading

References

Design Objective

For a given DMS P_{X}, we want to maximize the rate

$$
\begin{equation*}
R=\frac{\left.\mathrm{H}\left(P_{X}^{\mathcal{W}}\right)\right]}{\mathrm{E}[\ell(Y)]} \tag{38}
\end{equation*}
$$

for a binary output alphabet.

Informational Divergence

We choose as target distribution the uniform distribution P_{U} on $\mathcal{Z}=\{0,1\}$ and we evaluate the informational divergence.

$$
\begin{align*}
D\left(P_{X}^{\mathcal{W}} \| P_{U}^{\mathcal{C}}\right) & \stackrel{(a)}{=} \sum_{j \in \mathcal{B}} Q(j) D\left(P_{S_{j}} \| P_{U}\right) \tag{39}\\
& =\sum_{j \in \mathcal{B}} Q(j)\left[\sum_{a \in \mathcal{S}_{j}} P_{S_{j}}(a) \log _{2} \frac{P_{S_{j}}(a)}{\frac{1}{2}}\right] \tag{40}\\
& =\sum_{j \in \mathcal{B}} Q(j)\left[1-\mathrm{H}\left(P_{S_{j}}\right)\right] \tag{41}\\
& \stackrel{(b)}{=} \mathrm{E}[\ell(Y)]-\mathrm{H}\left(P_{X}^{\mathcal{W}}\right) . \tag{42}
\end{align*}
$$

Equality (a) follows by the Leaf Divergence Lemma and (b) by the Path Length Lemma and the Leaf Entropy Lemma. $Q(j)$ are node probabilities for the codebook tree \mathcal{C} with leaf distribution $P_{X}^{\mathcal{W}}$.

Limits

- Rate:

$$
\begin{equation*}
\frac{\mathrm{H}\left(P_{X}^{\mathcal{W}}\right)}{\mathrm{E}[\ell(Y)]}=1-\frac{\mathrm{D}\left(P_{X}^{\mathcal{W}} \| P_{U}^{\mathcal{C}}\right)}{\mathrm{E}[\ell(Y)]} \leq 1 \tag{43}
\end{equation*}
$$

- Expected codeword length:

$$
\begin{equation*}
\mathrm{E}[\ell(Y)]=\mathrm{H}\left(P_{X}^{\mathcal{W}}\right)+\mathrm{D}\left(P_{X}^{\mathcal{W}} \| P_{U}^{\mathcal{C}}\right) \geq \mathrm{H}\left(P_{X}^{\mathcal{W}}\right) \tag{44}
\end{equation*}
$$

We can either maximize the rate or minimize the minimize the informational divergence per output bit, over all dicionaries \mathcal{W} and all codes \mathcal{C}. No efficient algorithm is known!
Note: we achieve the maximum rate, if $\mathrm{D}\left(P_{X}^{\mathcal{W}} \| P_{U}^{\mathcal{C}}\right)=0$, the uniform target distribution P_{U} that we chose before indeed maximizes the rate!

For Huffman Coding, we fix the dicionary $\mathcal{W}=\mathcal{X}$. The limits are now

- Rate:

$$
\begin{equation*}
\frac{\mathrm{H}\left(P_{X}\right)}{\mathrm{E}[\ell(Y)]}=1-\frac{\mathrm{D}\left(P_{X} \| P_{U}^{\mathcal{C}}\right)}{\mathrm{E}[\ell(Y)]} \leq 1 \tag{45}
\end{equation*}
$$

- Expected codeword length:

$$
\begin{equation*}
\mathrm{E}[\ell(Y)]=\mathrm{H}\left(P_{X}\right)+\mathrm{D}\left(P_{X} \| P_{U}^{\mathcal{C}}\right) \geq \mathrm{H}\left(P_{X}\right) \tag{46}
\end{equation*}
$$

To maximize the rate, we can now either minimize the expected codeword length or the informational divergence.

Huffman Coding ${ }^{3}$

- The remaining problem: Choose \mathcal{C}, so that the expected output length

$$
\begin{equation*}
\mathrm{E}[\ell(Y)]=\sum_{x \in \mathcal{X}} P_{X}(x) \ell[f(x)] \tag{47}
\end{equation*}
$$

is minimized.

[^2]
Huffman Coding: Problem

For notational simplicity, we denote the probabilities by
$p_{1}, p_{2}, \ldots, p_{n}$ and the expected output lengths by $\ell_{1}, \ell_{2}, \ldots, \ell_{n}$.
Problem 13. Show the following properties of an optimal code.

1. If $p_{i}<p_{j}$ then $\ell_{i} \geq \ell_{j}$.
2. An optimal codebook is complete.
3. Suppose $p_{1} \geq p_{2} \geq \cdots \geq p_{n-1} \geq p_{n}$. Then there exists an optimal codebook with

$$
\begin{equation*}
\ell_{n}=\ell_{n-1}=\max _{i} \ell_{i}, \tag{48}
\end{equation*}
$$

that is, the leaves with the lengths ℓ_{n}, ℓ_{n-1} are siblings with a common predecessor.

Huffman Coding: the algorithm

Suppose the path lengths are optimal and fulfill (48). Let L be a random variable on the leaves. The lengths
$\ell_{1}, \ell_{2}, \ldots, \ell_{n-2}, \ell_{n-1}-1$ are path lengths of a new tree with the predecessor of the leaves with lengths ℓ_{n}, ℓ_{n-1} as new leaf. The new leaf has probability $p_{n}+p_{n-1}$. The new tree has $n-1$ leaves. Let L^{\prime} be a random variable on the leaves of the new tree. Because of the Path Length Lemma, we have

$$
\begin{equation*}
\mathrm{E}[\ell(L)]=\mathrm{E}\left[\ell\left(L^{\prime}\right)\right]+p_{n}+p_{n-1} . \tag{49}
\end{equation*}
$$

Because the path lengths of the tree with n leaves is optimal, the path lengths of the new tree with $n-1$ leaves must also be optimal, that is, it must minimize $\mathrm{E}\left[\ell\left(L^{\prime}\right)\right]$. We then therefore construct the optimal tree, by recursively connecting the leaves of smallest probability to a common predecessor.

Outline

Probability and Information Measures

Rooted Trees with Probabilities

Distribution Matching

Data Compression

Coding for Noiseless Channels

Further Reading

References

Problem Statement

- At the input, we have independent and uniformly distributed bits P_{U}.
- The output letters $a \in \mathcal{Z}$ have different lengths $v(a)$. The values $v(a)$ are positive real number, but not necessarily integers.
- We want to transmit at maximum rate.
- The length function v defines a discrete noiseless channel.

Target distribution

Define the target distribution P_{Z} as

$$
\begin{equation*}
P_{Z}(a)=2^{-C v(a)}, \quad \text { for each } a \in \mathcal{Z} \tag{50}
\end{equation*}
$$

where C is chosen such that

$$
\begin{equation*}
\sum_{a \in \mathcal{Z}} 2^{-C v(a)}=1 \tag{51}
\end{equation*}
$$

Zielverteilung

We develop the informational divergence:

$$
\begin{align*}
\mathrm{D}\left(P_{Y} \| P_{Z}\right) & =\sum_{a \in \mathcal{Z}} P_{Y}(a) \log _{2} \frac{P_{Y}(a)}{2^{-C v(a)}} \tag{52}\\
& =C \sum_{a \in \mathcal{Z}} P_{Y}(a) v(a)-\mathrm{H}\left(P_{Y}\right) \tag{53}\\
& =C \mathrm{E}[v(Y)]-\mathrm{H}\left(P_{Y}\right) . \tag{54}
\end{align*}
$$

Cosequently, we have

$$
\begin{equation*}
R=\frac{\mathrm{H}\left(P_{Y}\right)}{\mathrm{E}[v(Y)]}=C-\frac{\mathrm{D}\left(P_{Y} \| P_{Z}\right)}{\mathrm{E}[v(Y)]} . \tag{55}
\end{equation*}
$$

Thus, C is the maximum rate (also called capacity of the noiseless channel v) and it is reached, if $P_{Y}=P_{Z}$. This shows that the P_{Z} chosen by us is indeed optimal.

Distribution Matching

We develop the informational divergence.

$$
\begin{align*}
\mathrm{D}\left(P_{U}^{\mathcal{W}} \| P_{Z}^{\mathcal{C}}\right) & \stackrel{(\mathrm{a})}{=} \sum_{i \in \mathcal{B}} Q(i) \mathrm{D}\left(P_{S_{i}} \| P_{Z}\right) \tag{56}\\
& \stackrel{(\mathrm{b})}{=} \sum_{i \in \mathcal{B}} Q(i)\left\{C \mathrm{E}\left[\Delta v\left(S_{i}\right)\right]-\mathrm{H}\left(P_{S_{i}}\right)\right\} \tag{57}\\
& \stackrel{(\mathrm{c})}{=} C \mathrm{E}[v(Y)]-\mathrm{H}\left(P_{U}^{\mathcal{W}}\right) \tag{58}
\end{align*}
$$

Equality (a) follows by the Leaf Divergence Lemma, (b) follows by (54), and (c) follows by the LANSIT and the Leaf Entropy Lemma. Thus, we have

$$
\begin{equation*}
R=\frac{\mathrm{H}\left(P_{U}^{\mathcal{W}}\right)}{\mathrm{E}[v(Y)]}=C-\frac{\mathrm{D}\left(P_{U}^{\mathcal{W}} \| P_{Z}^{\mathcal{C}}\right)}{\mathrm{E}[v(Y)]} . \tag{59}
\end{equation*}
$$

Maximizing the rate and equivalently, minimizing the informational divergence per expected codeword length over the dictionary \mathcal{W} and the codebook \mathcal{C} is difficult and no efficient algorithm is known.

Fixed Codebook

We fix the codebook. The remaining problem is to minimize

$$
\begin{equation*}
\frac{\mathrm{D}\left(P_{U}^{\mathcal{W}} \| P_{Z}\right)}{\mathrm{E}[v(Y)]} \tag{60}
\end{equation*}
$$

over the dictionary \mathcal{W}.

Equivalent Problem

Suppose we would know the minimimum δ, that is

$$
\begin{equation*}
\frac{\mathrm{D}\left(P_{U}^{\mathcal{W}} \| P_{Z}\right)}{\mathrm{E}[v(Y)]} \geq \delta \tag{61}
\end{equation*}
$$

with equality, if \mathcal{W} is optimal. Equivalent are

$$
\begin{align*}
\mathrm{D}\left(P_{U}^{\mathcal{W}} \| P_{Z}\right) & \geq \delta \mathrm{E}[v(Y)] \tag{62}\\
\Leftrightarrow \mathrm{D}\left(P_{U}^{\mathcal{W}} \| P_{Z}\right)-\delta \mathrm{E}[v(Y)] & \geq 0 \tag{63}\\
\Leftrightarrow \sum_{a \in \mathcal{W}} P_{U}^{\mathcal{W}}(a)\left[\log _{2} \frac{P_{U}^{\mathcal{W}}(a)}{P_{Z}(a)}-\delta v(a)\right] & \geq 0 \tag{64}\\
\Leftrightarrow \sum_{a \in \mathcal{W}} P_{U}^{\mathcal{W}}(a) \log _{2} \frac{P_{U}^{\mathcal{W}}(a)}{P_{Z}(a) 2^{\delta v(a)}} & \geq 0 \tag{65}\\
\Leftrightarrow \mathrm{D}\left(P_{U}^{\mathcal{W}} \| P_{Z} \circ 2^{\delta v}\right) & \geq 0 \tag{66}
\end{align*}
$$

Geometric Huffman Coding ${ }^{4}$

By (66), we know that we must minimize $\mathrm{D}\left(P_{U}^{\mathcal{W}} \| T\right)$ for $T=P_{Z} \circ 2^{\delta v} . T$ is a non-negative function on \mathcal{Z}, but not necessarily a distribution. Geometric Huffman Coding calculates the optimal dictionary \mathcal{W}. The algorithm is similar to Huffman Coding.

- Let $T(a) \geq T(b)$ be the smallest function values. We distinguish to cases.

1. $T(a) \geq 4 T(b)$. We simply remove b.
2. $T(a)<4 T(b)$. We connect a and b in a common predecessor e. We assign $T(e)=2 \sqrt{T(a) T(b)}$.
We repeat this procedure until we are left with one node only, which is the root of the constructed tree. The constructed tree is the optimal dictionary \mathcal{W}.
[^3]Finding δ^{5}

The following algorithm finds δ and the optimal dictionary \mathcal{W}. Normalized Geometric Huffman Coding

```
\(\hat{\mathcal{W}} \leftarrow \operatorname{argmin} \mathrm{D}\left(P_{U}^{\mathcal{W}} \| P_{Z}\right)\)
repeat
    \(\hat{\delta} \leftarrow \frac{\mathrm{D}\left(P^{\hat{U}} \| P_{z}\right)}{\mathrm{E}[v(Y)]}\)
    \(\hat{\mathcal{W}} \leftarrow \underset{\mathcal{W}}{\operatorname{argmin}} \mathrm{D}\left(P \stackrel{\mathcal{W}}{U} \| P_{Z} \circ 2^{\delta v}\right)\)
            W
until \(\hat{\delta}=\frac{\mathrm{D}\left(P_{\mathcal{U}}^{\hat{\mathcal{H}}} \| P_{Z}\right)}{\mathrm{E}[v(Y)]}\)
\(\delta \leftarrow \hat{\delta}, \mathcal{W} \leftarrow \hat{\mathcal{W}}\)
```

[^4]Further Reading

Further Reading

- Data compression with fixed code: Tunstall Coding [7],[8, Section 2.3.4].
- Distribution matching with fixed dictionary [9].
Probability and Information MeasuresRooted Trees with ProbabilitiesDistribution MatchingData Compression
Coding for Noiseless Channels
Further Reading
References

References I

[1] R. A. Rueppel and J. L. Massey, "Leaf-average node-sum interchanges in rooted trees with applications," in Communications and Cryptography: Two sides of One Tapestry, R. E. Blahut, D. J. Costello Jr., U. Maurer, and T. Mittelholzer, Eds. Kluwer Academic Publishers, 1994.
[2] G. Böcherer and R. A. Amjad, "Informational divergence and entropy rate on rooted trees with probabilities," in IEEE Int. Symp. Inf. Theory (ISIT), 2014. [Online]. Available: http://arxiv.org/abs/1310.2882
[3] D. A. Huffman, "A method for the construction of minimum-redundancy codes," Proc. IRE, vol. 40, no. 9, pp. 1098-1101, Sep. 1952.
[4] G. Böcherer and R. Mathar, "Matching dyadic distributions to channels," in Proc. Data Compression Conf., 2011, pp. 23-32.

References II

[5] G. Böcherer, "Capacity-achieving probabilistic shaping for noisy and noiseless channels," Ph.D. dissertation, RWTH Aachen University, 2012. [Online]. Available:
http://www.georg-boecherer.de/capacityAchievingShaping.pdf
[6] __, "Geometric Huffman coding," http://www.georg-boecherer.de/ghc, Dec. 2010.
[7] B. Tunstall, "Synthesis of noiseless compression codes," Ph.D. dissertation, 1967.
[8] J. L. Massey, "Applied digital information theory I," lecture notes, ETH Zurich. [Online]. Available:
http://www.isiweb.ee.ethz.ch/archive/massey_scr/adit1.pdf
[9] R. A. Amjad and G. Böcherer, "Fixed-to-variable length distribution matching," in IEEE Int. Symp. Inf. Theory (ISIT), 2013. [Online]. Available: http://arxiv.org/abs/1302.0019

[^0]: ${ }^{1}$ Leaf-Average Node-Sum Interchange Theorem [1].

[^1]: ${ }^{2}$ See [2].

[^2]: ${ }^{3}$ See [3].

[^3]: ${ }^{4}$ Proof of optimality is given in [4] and [5, Section 3.2.3]. See also [6].

[^4]: ${ }^{5}$ The proof of optimality is provided in [5, Section 4.1.1].

