On Joint Design of Probabilistic Shaping and Forward Error Correction for Optical Systems

OFC 2018 / San Diego 12 March 2018

Georg Böcherer
 Mathematical and Algorithmic Sciences Lab
 Huawei Technologies Paris

PAS History

- G. Böcherer, F. Steiner, and P. Schulte, "Bandwidth efficient and rate-matched low-density parity-check coded modulation," IEEE Trans. Commun., vol. 63, no. 12, pp. 4651-4665, Dec. 2015
- P. Schulte and G. Böcherer, "Constant composition distribution matching," IEEE Trans. Inf. Theory, vol. 62, no. 1, pp. 430-434, Jan. 2016
- F. Buchali, G. Böcherer, W. Idler, L. Schmalen, P. Schulte, and F. Steiner, "Experimental demonstration of capacity increase and rate-adaptation by probabilistically shaped 64-QAM," in Proc. Eur. Conf. Optical Commun. (ECOC), Paper PDP3.4, Valencia, Spain, 2015

PAS History

Bell Labs Prize Final 2015

HUAWEI TECHNOLOGIES CO., LTD.

PSE-3 Infographic 2018
nokia Amenitservien Eypur 3pse3
Taking light to the limit

What limits us, irspires us

This Tutorial

- For practical performance of PS, visit booth 2228 and check out the PSE-3.
- This talk: A foundation of PS design tools.

Outline

- PS Achievable FEC Rates
- Case Study: Offline Calculation of PS Achievable FEC Rates
- PS Achievable Rates

Part 1: PS Achievable FEC Rates

Code word detection in noise

PS Code Ensemble

- Linear code

$$
\begin{equation*}
\mathscr{C}=\left\{\boldsymbol{c} \in \mathscr{X}^{n}: \boldsymbol{c} \boldsymbol{H}^{T}=\mathbf{0}\right\} \tag{1}
\end{equation*}
$$

- Transmit shaped code word $\boldsymbol{x} \in \mathscr{C}$ with empirical distribution P_{X}.
- Non-negative decoding metric

$$
\begin{equation*}
q(x, y), \quad x \in \mathscr{X}, y \in \mathscr{Y} . \tag{2}
\end{equation*}
$$

- Decoding rule

$$
\begin{equation*}
\hat{\boldsymbol{c}}=\underset{\boldsymbol{c}: \boldsymbol{c H}^{\top}=\mathbf{0}}{\operatorname{argmax}} \prod_{j=1}^{n} q\left(c_{j}, y_{j}\right) \tag{3}
\end{equation*}
$$

- Decoding error if $\boldsymbol{c} \neq \mathbf{x}$.

Question: is there a rate R code that decodes x^{n} correctly from y^{n} ?

Literature

- Shannon, 1948 [4]: mutual information by typicality.
- Gallager, 1968 [5]: mutual information by error exponent.
- Kaplan \& Shamai, 1993 [6]: generalized mutual information (GMI) by error exponent.
- Ganti, Lapidoth, Telatar, 2000 [7]: LM-rate and GMI by threshold decoder.

> PS ensemble is NOT treated

Research on PS achievable rates since 2014, my findings:

- G. Böcherer, "Achievable rates for probabilistic shaping," arXiv preprint, 2017. [Online]. Available: https://arxiv.org/abs/1707.01134
- Explains why I don't use the GMI and its variations.

PS Achievable FEC Rate

- Measurement x^{n}, y^{n} : For code rates $<R_{\text {FEC }}$, there exist codes that can decode x^{n} from y^{n} using metric q where

$$
R_{\mathrm{FEC}}=\log _{2}|\mathscr{X}|-\underbrace{\frac{1}{n} \sum_{i=1}^{n}\left[-\log _{2} \frac{q\left(x_{i}, y_{i}\right)}{\sum_{a \in \mathscr{X}} q\left(a, y_{i}\right)}\right]}_{\text {uncertainty }}
$$

- Memoryless channel $p_{Y \mid X}$:

$$
R_{\mathrm{FEC}}=\log _{2}|\mathscr{X}|-\mathbb{E}\left[-\log _{2} \frac{q(X, Y)}{\sum_{a \in \mathscr{X}} q(a, Y)}\right] .
$$

PS Achievable FEC Rate

Powerful tool, can be directly instantiated for

- Optimal metric.
- Binary FEC: Achievable Binary Code (ABC) Rate.
- Soft-decision (SD) metric.
- Hard-decision (HD) metric.

Example: Optimal Metric

- Optimal metric

$$
q(x, y)=P_{X \mid Y}(x \mid y)
$$

- Uncertainty

$$
\mathbb{H}(X \mid Y)
$$

- Achievable FEC Rate

$$
R_{\mathrm{FEC}}=\log _{2}|\mathscr{X}|-\mathbb{H}(X \mid Y) .
$$

Example: ABC Rate

- m-bit constellation label $\boldsymbol{b}=b_{1} \cdots b_{m}$.
- Binary metric

$$
q(\boldsymbol{b}, y)=\prod_{i=1}^{m} q_{i}\left(b_{i}, y\right)
$$

- ABC rate

$$
R_{\mathrm{abc}}=1-\frac{1}{m} \sum_{i=1}^{m} \mathbb{E}\left[-\log _{2} \frac{q_{i}\left(B_{i}, Y\right)}{\sum_{b \in\{0,1\}} q_{i}(b, Y)}\right]
$$

Example: SD Decoding

- Bitwise demapper calculates

$$
\ell_{i}=\log \frac{P_{B_{i} \mid Y}(0 \mid y)}{P_{B_{i} \mid Y}(1 \mid y)} .
$$

\log domain	probability domain
$q_{\log }(\boldsymbol{b}, \ell)=\sum_{i=1}^{m}\left(1-2 b_{i}\right) \ell_{i}$	$q(\boldsymbol{b}, \ell)=\prod_{i=1}^{m} e^{s\left(1-2 b_{i}\right) \ell_{i}}$

- Optimal for channel $P_{B \mid Y}$, achieving

$$
R_{\mathrm{abc}}=1-\frac{1}{m} \sum_{i=1}^{m} \mathbb{H}\left(B_{i} \mid Y\right)
$$

Example: HD Decoding

- Demapper calculates

$$
\hat{b}_{i}=\omega_{i}(y)
$$

- Hamming metric

$$
q\left(b, \hat{b}_{i}\right)=\mathbb{1}\left(b, \hat{b}_{i}\right)= \begin{cases}1, & b=\hat{b}_{i} \\ 0, & \text { otherwise }\end{cases}
$$

log domain	probability domain
$q_{\log }(\boldsymbol{b}, \hat{\boldsymbol{b}})=\sum_{i=1}^{m} \mathbb{1}\left(b_{i}, \hat{b}_{i}\right)$	$q(\boldsymbol{b}, \hat{\boldsymbol{b}})=\prod_{i=1}^{m} e^{s \mathbb{1}\left(b_{i}, \hat{b}_{i}\right)}$

- Achieves

$$
R_{\mathrm{abc}}=1-\mathbb{H}_{2}(\varepsilon)
$$

where ε is the preFEC-BER.

Part 2: Case Study

Offline Calculation of Achievable FEC Rates from Measurements

16-QAM Experiment

- Gray labelled 16-QAM constellation $\Rightarrow m=4$.
- $n / m=64800 / 4=16200$ quadrature amplitude modulation (QAM) symbols $x^{n / m}$.
- Noisy measurement $y^{n / m}$.

Bitwise Demapping

- Define offline a label $\{0,1\} \rightarrow \mathscr{X}$ on the input alphabet \mathscr{X}.
- Represent the n / m input symbols $x^{n / m}$ by n bits b^{n} according to the label.
- Demapper assumes Gaussian noise.
- For each bit $b_{j i}$, the demapper outputs

$$
\begin{equation*}
\ell_{j i}=\log \frac{P_{B_{i} \mid Y}\left(0 \mid y_{j}\right)}{P_{B_{i} \mid Y}\left(1 \mid y_{j}\right)} . \tag{4}
\end{equation*}
$$

ABC Rate

- For channel measurement $\boldsymbol{b}_{1}, \ldots, \boldsymbol{b}_{n / m}, \ell_{1}, \ldots, \ell_{n / m}, \mathrm{ABC}$ rate is

$$
\begin{align*}
R_{\mathrm{abc}} & =1-\frac{1}{\frac{n}{m}} \sum_{j=1}^{n / m} \frac{1}{m} \sum_{i=1}^{m}\left(-\log _{2} \frac{e^{\left(1-2 b_{j i}\right) \frac{\ell_{j i}}{2}}}{e^{-\frac{\ell_{j i}}{2}}+e^{\frac{\ell_{j i}}{2}}}\right) \tag{5}\\
& =0.6156 \mathrm{bit} . \tag{6}
\end{align*}
$$

\Rightarrow For code rates <0.6156 bit, there exist FEC codes that can recover b^{n} from ℓ^{n}.

Offline Evaluation of FEC Codes

- Objective: Check if actual forward error correction (FEC) decoders can recover b^{n} from ℓ^{n} so that $\hat{b}^{n}=b^{n}$.

Offline Evaluation of FEC Codes

- MATLAB implements the length $n=64800$ DVB-S2 LDPC codes of rates

$$
\begin{equation*}
R_{\mathrm{FEC}}=1 / 4,1 / 3,2 / 5,1 / 2,3 / 5,2 / 3,3 / 4,4 / 5,5 / 6,8 / 9,9 / 10 \tag{7}
\end{equation*}
$$

- Objective: use ABC rate to predict which of these FEC Rates are achievable for our 16-QAM measurement b^{n}, ℓ^{n}.
- We check this by passing ℓ^{n} to the respective decoders and check if for the output we have $\hat{b}^{n}=b^{n}$.
- Problem: we transmitted b^{n} before choosing a code and b^{n} may not be a code word in any of the codes of interest.

Offline Evaluation of FEC Codes

The following procedure solves the problem of b^{n} not being a code word.

- Pick an arbitrary code word c^{n} from a code of interest.
- Calculate the scrambling sequence $s^{n}=c^{n} \oplus b^{n}$.
- Calculate the modified demapper output $\tilde{\ell}^{n}$ with

$$
\begin{equation*}
\tilde{\ell}_{i}=\left(1-2 s_{i}\right) \ell_{i} . \tag{8}
\end{equation*}
$$

- Pass $\tilde{\ell}^{n}$ to the decoder and check if it decides for c^{n}.

Offline Evaluation of FEC Codes

Part 3: PS Achievable Rates

Mapping to shaped sequences

From Achievable FEC Rates to Achievable Rates

- Recall: Measurement x^{n}, y^{n}, achievable FEC Rate

$$
\begin{equation*}
R \mathrm{ac}=\log _{2}|\mathscr{X}|-\underbrace{\sum_{i=1}^{n}\left[-\log _{2} \frac{q\left(x_{i}, y_{i}\right)}{\sum_{a \in \mathscr{X}} q\left(a, y_{i}\right)}\right]}_{\text {uncertainty } u_{s}} \tag{9}
\end{equation*}
$$

- Let $\mathscr{S} \subseteq \mathscr{C}$ be the subset of code word achieving uncertainty $\leq u_{s}$.
- Achievable rate is

$$
\begin{equation*}
R=\left[\frac{\log _{2}|\mathscr{S}|}{n}-u_{s}\right]^{+} \tag{10}
\end{equation*}
$$

- Challenge 1: identify \mathscr{S} and $|\mathscr{S}|$.
- Challenge 2: encode into \mathscr{S}.

Example: Shaping for Coherent Transmission

Good 1D Input Distributions

probabilistic amplitude shaping (PAS) [1]

- How many shaped code words can this architecture index?

Intermezzo: Types [9]

- Let x^{n} be a sequence with symbols in \mathscr{X}.
- Let $P_{x^{n}}$ be the empirical distribution of x^{n}, i.e.,

$$
\begin{equation*}
P_{x^{n}}(a)=\frac{\text { number of occurences of } a \text { in } x^{n}}{n}=\frac{n_{a}}{n}, \quad a \in \mathscr{X} . \tag{11}
\end{equation*}
$$

- $P_{X}=P_{x^{n}}$ is a distribution on \mathscr{X} and is called an n-type.
- All permutations of x^{n} also have the n-type P_{X}.
- Let $\mathscr{T}^{n}\left(P_{X}\right)$ be the set of all permutations of x^{n}.

1D PAS Achievable Rate

- Shaping set $\mathscr{S}=\mathscr{T}^{w}\left(P_{A}\right) \times\{-1,1\}^{w}$, where P_{A} is an amplitude distribution.
- A constant composition distribution matcher (CCDM) [2] can index $2^{\left\lfloor\log _{2} \mid \mathscr{T}^{w}\left(P_{A}\right)\right\rfloor}$ sequences in $\mathscr{T}^{w}\left(P_{A}\right)$.
- There are 2^{w} sign sequences in $\{-1,1\}^{w}$.
- 1D PAS Achievable rate is

$$
\begin{equation*}
\mathrm{R}_{\mathrm{PAS}}=\left[\frac{\left\lfloor\log _{2}\left|\mathscr{T}^{w}\left(P_{A}\right)\right|\right\rfloor}{w}+1-u_{s}\right]^{+} \tag{12}
\end{equation*}
$$

- We have

$$
\begin{equation*}
\left|\mathscr{T}^{w}\left(P_{A}\right)\right|=\binom{w}{w_{1}, w_{2}, \ldots, w_{M}} \tag{13}
\end{equation*}
$$

where $w_{i}=w \cdot P_{A}\left(a_{i}\right)$ and where \mathcal{M} is the number of distinct amplitudes.

Asymptotic Rate on Memoryless Channel

- Suppose $P_{\mathbf{B}}, p_{Y \mid \boldsymbol{B}}$ assumed by the demapper are correct so that the uncertainty is

$$
\begin{equation*}
u_{s}=\sum_{i=1}^{m} \mathbb{H}\left(B_{i} \mid Y\right) \tag{14}
\end{equation*}
$$

- Suppose further that the length w of the CCDM output is large so that

$$
\frac{\log _{2}\left|\mathscr{T}^{w}\left(P_{A}\right)\right|}{w}=\mathbb{H}\left(P_{A}\right) .
$$

- In this case, we have

$$
\begin{equation*}
\mathrm{RPAS}=\left[\mathbb{H}\left(P_{A}\right)+1-\sum_{i=1}^{m} \mathbb{H}\left(B_{i} \mid Y\right)\right]^{+}=\left[\mathbb{H}(\boldsymbol{B})-\sum_{i=1}^{m} \mathbb{H}\left(B_{i} \mid Y\right)\right]^{+} \tag{15}
\end{equation*}
$$

Discussion

- For memoryless channels, we can choose w large, e.g., $w=n / m$ and all sequences in $\mathscr{T}^{w}\left(P_{A}\right)$ result in the same uncertainty u_{s}.
- In general not true for the optical fiber. We may therefore need to choose $w \ll n / m$. This must be accounted for when calculating the achievable rate and it may be smaller than $\left[\mathbb{H}(\boldsymbol{B})-\sum_{i=1}^{m} \mathbb{H}\left(B_{i} \mid Y\right)\right]^{+}$.

Conclusions

- We learned how to determine PS achievable FEC rates offline from measurements.
- We learned how to determine PS rates achievable by practical systems.
- Key tools are uncertainty, ABC rate, and counting sequences.

Details in

- G. Böcherer, "Achievable rates for probabilistic shaping," arXiv preprint, 2017. [Online]. Available: https://arxiv.org/abs/1707.01134

References I

[1] G. Böcherer, F. Steiner, and P. Schulte, "Bandwidth efficient and rate-matched low-density parity-check coded modulation," IEEE Trans. Commun., vol. 63, no. 12, pp. 4651-4665, Dec. 2015.
[2] P. Schulte and G. Böcherer, "Constant composition distribution matching," IEEE Trans. Inf. Theory, vol. 62, no. 1, pp. 430-434, Jan. 2016.
[3] F. Buchali, G. Böcherer, W. Idler, L. Schmalen, P. Schulte, and F. Steiner, "Experimental demonstration of capacity increase and rate-adaptation by probabilistically shaped 64-QAM," in Proc. Eur. Conf. Optical Commun. (ECOC), Paper PDP3.4, Valencia, Spain, 2015.
[4] C. E. Shannon, "A mathematical theory of communication," Bell Syst. Tech. J., vol. 27, 379-423 and 623-656, 1948.
[5] R. G. Gallager, Information Theory and Reliable Communication. John Wiley \& Sons, Inc., 1968.
[6] G. Kaplan and S. Shamai (Shitz), "Information rates and error exponents of compound channels with application to antipodal signaling in a fading environment," $A E U ̈$, vol. 47, no. 4, pp. 228-239, 1993.

References II

[7] A. Ganti, A. Lapidoth, and E. Telatar, "Mismatched decoding revisited: General alphabets, channels with memory, and the wide-band limit," IEEE Trans. Inf. Theory, vol. 46, no. 7, pp. 2315-2328, Nov. 2000.
[8] G. Böcherer, "Achievable rates for probabilistic shaping," arXiv preprint, 2017. [Online]. Available: https://arxiv.org/abs/1707.01134.
[9] I. Csiszár and P. C. Shields, "Information theory and statistics: A tutorial," Found. Trends Comm. Inf. Theory, vol. 1, no. 4, pp. 417-528, 2004.

Acronyms

FEC forward error correction
PAS probabilistic amplitude shaping
QAM quadrature amplitude modulation
LDPC low-density parity-check
CCDM constant composition distribution matcher

