On Joint Design of Probabilistic Shaping and Forward Error Correction for Optical Systems

OFC 2018 / San Diego 12 March 2018

www.huawei.com

Georg Böcherer

Mathematical and Algorithmic Sciences Lab Huawei Technologies Paris

HUAWEI TECHNOLOGIES CO., LTD.

PAS History

- G. Böcherer, F. Steiner, and P. Schulte, "Bandwidth efficient and rate-matched low-density parity-check coded modulation," *IEEE Trans. Commun.*, vol. 63, no. 12, pp. 4651–4665, Dec. 2015
- P. Schulte and G. Böcherer, "Constant composition distribution matching," *IEEE Trans. Inf. Theory*, vol. 62, no. 1, pp. 430–434, Jan. 2016
- F. Buchali, G. Böcherer, W. Idler, L. Schmalen, P. Schulte, and F. Steiner, "Experimental demonstration of capacity increase and rate-adaptation by probabilistically shaped 64-QAM," in *Proc. Eur. Conf. Optical Commun.* (ECOC), Paper PDP3.4, Valencia, Spain, 2015

PAS History

Bell Labs Prize Final 2015

This Tutorial

- ► For practical performance of PS, visit **booth 2228** and check out the **PSE-3**.
- **This talk:** A foundation of PS design tools.

Outline

- PS Achievable FEC Rates
- Case Study: Offline Calculation of PS Achievable FEC Rates
- PS Achievable Rates

Part 1: PS Achievable FEC Rates

Code word detection in noise

PS Code Ensemble

Linear code

$$\mathscr{C} = \{ \boldsymbol{c} \in \mathscr{X}^n \colon \boldsymbol{cH}^T = \boldsymbol{0} \}.$$
(1)

Transmit shaped code word $\mathbf{x} \in \mathscr{C}$ with empirical distribution P_X .

Non-negative decoding metric

$$q(x,y), \quad x \in \mathscr{X}, y \in \mathscr{Y}.$$
 (2)

Decoding rule

$$\hat{\boldsymbol{c}} = \underset{\boldsymbol{c}: \boldsymbol{c}\boldsymbol{H}^{\mathsf{T}}=\boldsymbol{0}}{\operatorname{argmax}} \prod_{j=1}^{n} q(c_j, y_j). \tag{3}$$

• Decoding error if $c \neq x$.

Question: is there a rate *R* code that decodes x^n correctly from y^n ?

Literature

- Shannon, 1948 [4]: mutual information by typicality.
- ► Gallager, 1968 [5]: mutual information by error exponent.
- Kaplan & Shamai, 1993 [6]: generalized mutual information (GMI) by error exponent.
- ► Ganti, Lapidoth, Telatar, 2000 [7]: LM-rate and GMI by threshold decoder.

PS ensemble is NOT treated

Research on PS achievable rates since 2014, my findings:

- G. Böcherer, "Achievable rates for probabilistic shaping," arXiv preprint, 2017. [Online]. Available: https://arxiv.org/abs/1707.01134
- Explains why I don't use the GMI and its variations.

PS Achievable FEC Rate

• Measurement x^n , y^n : For code rates $< R_{FEC}$, there exist codes that can decode x^n from y^n using metric q where

$$R_{\text{FEC}} = \log_2 |\mathscr{X}| - \underbrace{\frac{1}{n} \sum_{i=1}^{n} \left[-\log_2 \frac{q(x_i, y_i)}{\sum_{a \in \mathscr{X}} q(a, y_i)} \right]}_{\text{uncertainty}}$$

• Memoryless channel $p_{Y|X}$:

$$R_{\text{FEC}} = \log_2 |\mathscr{X}| - \mathbb{E} \left[-\log_2 \frac{q(X,Y)}{\sum_{a \in \mathscr{X}} q(a,Y)} \right].$$

PS Achievable FEC Rate

Powerful tool, can be directly instantiated for

- Optimal metric.
- Binary FEC: Achievable Binary Code (ABC) Rate.
- Soft-decision (SD) metric.
- Hard-decision (HD) metric.

▶ ...

Example: Optimal Metric

Optimal metric

$$q(x,y)=P_{X|Y}(x|y).$$

Uncertainty

 $\mathbb{H}(X|Y).$

Achievable FEC Rate

 $R_{\text{FEC}} = \log_2 |\mathscr{X}| - \mathbb{H}(X|Y).$

Example: ABC Rate

• *m*-bit constellation label $\boldsymbol{b} = b_1 \cdots b_m$.

▶ Binary metric

$$q(\boldsymbol{b}, \boldsymbol{y}) = \prod_{i=1}^m q_i(b_i, \boldsymbol{y}).$$

ABC rate

$$R_{abc} = 1 - \frac{1}{m} \sum_{i=1}^{m} \mathbb{E}\left[-\log_2 \frac{q_i(B_i, Y)}{\sum_{b \in \{0,1\}} q_i(b, Y)} \right]$$

Example: SD Decoding

Bitwise demapper calculates

$$\ell_i = \log \frac{P_{B_i|Y}(0|y)}{P_{B_i|Y}(1|y)}$$

log domain	probability domain
$q_{\log}(\boldsymbol{b},\ell) = \sum_{i=1}^{m} (1-2b_i)\ell_i$	$q(\boldsymbol{b},\ell) = \prod_{i=1}^{m} e^{s(1-2b_i)\ell_i}$

• Optimal for channel $P_{\boldsymbol{B}|Y}$, achieving

$$R_{\rm abc} = 1 - \frac{1}{m} \sum_{i=1}^{m} \mathbb{H}(B_i | Y).$$

Example: HD Decoding

Demapper calculates

$$\hat{b}_i = \omega_i(y).$$

▶ Hamming metric

$$q(b, \hat{b}_i) = \mathbb{1}(b, \hat{b}_i) = \begin{cases} 1, & b = \hat{b}_i \\ 0, & \text{otherwise} \end{cases}$$

log domain	probability domain
$q_{\log}(\boldsymbol{b}, \hat{\boldsymbol{b}}) = \sum_{i=1}^{m} \mathbb{1}(b_i, \hat{b}_i)$	$q(\boldsymbol{b}, \hat{\boldsymbol{b}}) = \prod_{i=1}^{m} e^{s\mathbb{1}(b_i, \hat{b}_i)}$

Achieves

$$R_{\rm abc} = 1 - \mathbb{H}_2(\varepsilon)$$

where ε is the preFEC-BER.

HUAWEI TECHNOLOGIES CO., LTD.

Part 2: Case Study Offline Calculation of Achievable FEC Rates from Measurements

16-QAM Experiment

• Gray labelled 16-QAM constellation $\Rightarrow m = 4$.

- ▶ n/m = 64800/4 = 16200 quadrature amplitude modulation (QAM) symbols $x^{n/m}$.
- Noisy measurement $y^{n/m}$.

Bitwise Demapping

- Define offline a label $\{0,1\} \to \mathscr{X}$ on the input alphabet \mathscr{X} .
- Represent the n/m input symbols $x^{n/m}$ by n bits b^n according to the label.
- Demapper assumes Gaussian noise.
- ▶ For each bit *b_{ji}*, the demapper outputs

$$\ell_{ji} = \log \frac{P_{B_i|Y}(0|y_j)}{P_{B_i|Y}(1|y_j)}.$$
(4)

ABC Rate

For channel measurement $\boldsymbol{b}_1, \dots, \boldsymbol{b}_{n/m}, \ell_1, \dots, \ell_{n/m}$, ABC rate is

$$R_{\rm abc} = 1 - \frac{1}{\frac{n}{m}} \sum_{j=1}^{n/m} \frac{1}{m} \sum_{i=1}^{m} \left(-\log_2 \frac{e^{(1-2b_{ji})\frac{\ell_{ji}}{2}}}{e^{-\frac{\ell_{ji}}{2}} + e^{\frac{\ell_{ji}}{2}}} \right)$$
(5)
= 0.6156 bit. (6)

⇒ For code rates < 0.6156 bit, there exist FEC codes that can recover b^n from ℓ^n .

HUAWEI TECHNOLOGIES CO., LTD.

• **Objective:** Check if actual forward error correction (FEC) decoders can recover b^n from ℓ^n so that $\hat{b}^n = b^n$.

• MATLAB implements the length n = 64800 DVB-S2 LDPC codes of rates

 $R_{\text{FEC}} = 1/4, \ 1/3, \ 2/5, \ 1/2, \ 3/5, \ 2/3, \ 3/4, \ 4/5, \ 5/6, \ 8/9, \ 9/10 \tag{7}$

- **• Objective:** use ABC rate to predict which of these FEC Rates are achievable for our 16-QAM measurement b^n , ℓ^n .
- We check this by passing ℓ^n to the respective decoders and check if for the output we have $\hat{b}^n = b^n$.
- Problem: we transmitted bⁿ before choosing a code and bⁿ may not be a code word in any of the codes of interest.

The following procedure solves the problem of b^n not being a code word.

- Pick an arbitrary code word cⁿ from a code of interest.
- Calculate the scrambling sequence $s^n = c^n \oplus b^n$.
- Calculate the modified demapper output $\tilde{\ell}^n$ with

$$\tilde{\ell}_i = (1 - 2s_i)\ell_i. \tag{8}$$

• Pass $\tilde{\ell}^n$ to the decoder and check if it decides for c^n .

HUAWEI TECHNOLOGIES CO., LTD.

Part 3: PS Achievable Rates

Mapping to shaped sequences

From Achievable FEC Rates to Achievable Rates

Recall: Measurement x^n, y^n , achievable FEC Rate

$$Rac = \log_2 |\mathscr{X}| - \underbrace{\sum_{i=1}^{n} \left[-\log_2 \frac{q(x_i, y_i)}{\sum_{a \in \mathscr{X}} q(a, y_i)} \right]}_{\text{uncertainty } u_i}$$
(9)

• Let $\mathscr{S} \subseteq \mathscr{C}$ be the subset of code word achieving uncertainty $\leq u_s$.

Achievable rate is

$$R = \left[\frac{\log_2|\mathscr{S}|}{n} - u_s\right]^+.$$
(10)

• Challenge 1: identify \mathscr{S} and $|\mathscr{S}|$.

▶ Challenge 2: encode into *S*.

Example: Shaping for Coherent Transmission

Good 1D Input Distributions

probabilistic amplitude shaping (PAS) [1]

How many shaped code words can this architecture index?

Intermezzo: Types [9]

- Let x^n be a sequence with symbols in \mathscr{X} .
- Let P_{x^n} be the empirical distribution of x^n , i.e.,

$$P_{x^n}(a) = \frac{\text{number of occurrences of } a \text{ in } x^n}{n} = \frac{n_a}{n}, \quad a \in \mathscr{X}.$$
(11)

- $P_X = P_{X^n}$ is a distribution on \mathscr{X} and is called an *n*-type.
- All permutations of x^n also have the *n*-type P_X .
- Let $\mathscr{T}^n(P_X)$ be the set of all permutations of x^n .

1D PAS Achievable Rate

- ▶ Shaping set $\mathscr{S} = \mathscr{T}^w(P_A) \times \{-1, 1\}^w$, where P_A is an amplitude distribution.
- A constant composition distribution matcher (CCDM) [2] can index $2^{\lfloor \log_2 | \mathscr{T}^w(P_A) \rfloor \rfloor}$ sequences in $\mathscr{T}^w(P_A)$.
- There are 2^w sign sequences in $\{-1, 1\}^w$.
- ID PAS Achievable rate is

$$R_{PAS} = \left[\frac{\lfloor \log_2 |\mathscr{T}^w(P_A)| \rfloor}{w} + 1 - u_s\right]^+$$
(12)

We have

$$|\mathscr{T}^{w}(P_{A})| = \binom{w}{w_{1}, w_{2}, \dots, w_{M}}$$
(13)

where $w_i = w \cdot P_A(a_i)$ and where *M* is the number of distinct amplitudes.

Asymptotic Rate on Memoryless Channel

Suppose P_B, p_{Y|B} assumed by the demapper are correct so that the uncertainty is

$$u_s = \sum_{i=1}^m \mathbb{H}(B_i | Y).$$
(14)

Suppose further that the length *w* of the CCDM output is large so that

$$\frac{\log_2|\mathscr{T}^w(P_A)|}{w}=\mathbb{H}(P_A).$$

In this case, we have

$$\mathsf{R}_{\mathsf{PAS}} = \left[\mathbb{H}(P_A) + 1 - \sum_{i=1}^{m} \mathbb{H}(B_i | Y) \right]^+ = \left[\mathbb{H}(B) - \sum_{i=1}^{m} \mathbb{H}(B_i | Y) \right]^+.$$
(15)

Discussion

- For memoryless channels, we can choose w large, e.g., w = n/m and all sequences in $\mathcal{T}^w(P_A)$ result in the same uncertainty u_s .
- ▶ In general not true for the optical fiber. We may therefore need to choose $w \ll n/m$. This must be accounted for when calculating the achievable rate and it may be smaller than $\left[\mathbb{H}(B) \sum_{i=1}^{m} \mathbb{H}(B_i|Y)\right]^+$.

Conclusions

- We learned how to determine PS achievable FEC rates offline from measurements.
- We learned how to determine PS rates achievable by practical systems.
- Key tools are **uncertainty**, **ABC rate**, and **counting sequences**.

Details in

 G. Böcherer, "Achievable rates for probabilistic shaping," arXiv preprint, 2017. [Online]. Available: https://arxiv.org/abs/1707.01134

References

- G. Böcherer, F. Steiner, and P. Schulte, "Bandwidth efficient and rate-matched low-density parity-check coded modulation," *IEEE Trans. Commun.*, vol. 63, no. 12, pp. 4651–4665, Dec. 2015.
- [2] P. Schulte and G. Böcherer, "Constant composition distribution matching," *IEEE Trans. Inf. Theory*, vol. 62, no. 1, pp. 430–434, Jan. 2016.
- [3] F. Buchali, G. Böcherer, W. Idler, L. Schmalen, P. Schulte, and F. Steiner, "Experimental demonstration of capacity increase and rate-adaptation by probabilistically shaped 64-QAM," in *Proc. Eur. Conf. Optical Commun.* (ECOC), Paper PDP3.4, Valencia, Spain, 2015.
- [4] C. E. Shannon, "A mathematical theory of communication," *Bell Syst. Tech. J.*, vol. 27, 379–423 and 623–656, 1948.
- [5] R. G. Gallager, Information Theory and Reliable Communication. John Wiley & Sons, Inc., 1968.
- [6] G. Kaplan and S. Shamai (Shitz), "Information rates and error exponents of compound channels with application to antipodal signaling in a fading environment," AEÜ, vol. 47, no. 4, pp. 228–239, 1993.

References II

- [7] A. Ganti, A. Lapidoth, and E. Telatar, "Mismatched decoding revisited: General alphabets, channels with memory, and the wide-band limit," *IEEE Trans. Inf. Theory*, vol. 46, no. 7, pp. 2315–2328, Nov. 2000.
- [8] G. Böcherer, "Achievable rates for probabilistic shaping," arXiv preprint, 2017.
 [Online]. Available: https://arxiv.org/abs/1707.01134.
- [9] I. Csiszár and P. C. Shields, "Information theory and statistics: A tutorial," Found. Trends Comm. Inf. Theory, vol. 1, no. 4, pp. 417–528, 2004.

Acronyms

- FEC forward error correction
- PAS probabilistic amplitude shaping
- **QAM** quadrature amplitude modulation
- LDPC low-density parity-check
- CCDM constant composition distribution matcher