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Preface

In 1974, James L. Massey observed in his work “Coding and Modulation in Digital
Communications” [1], that

From the coding viewpoint, the modulator, waveform channel, and demodu-
lator together constitute a discrete channel with q input letters and q′ output
letters.

He then concluded

...that the real goal of the modulation system is to create the “best” DMC
[discrete memoryless channel] as seen by the coding system.

These notes develop tools for designing modulation systems in Massey’s spirit.

G. Böcherer, February 2, 2018
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1. Introduction

The global society currently faces a rapid growth of data traffic in the internet, which will
continue in the coming decades. This puts tremendous pressure on telecommunication
companies, which need innovations to provide the required digital link capacities.

In fiber-optic communication, mobile communication, and satellite communication,
the data rate requirements can be met only if the digital transmitters map more than
one bit to each real dimension of each time-frequency slot. This requires higher-order
modulation where the digital transceivers must handle more than two signal points per
real dimension.

The laws of physics dictate that by amplifying the received signal, the receiver in-
evitably generates noise that is unpredictable. This noise corrupts the received signal,
and error correcting codes are needed to guarantee reliable communication.

Coded modulation is the combination of higher-order modulation with error correc-
tion. In these notes, basic principles of coded modulation are developed.

Chapter 2 reviews the components and figures-of-merit of digital communication sys-
tems, which are treated in detail in many text books. A good reference is [2]. The
chapters 3–4 are on the discrete time additive white Gaussian noise (AWGN) channel.
Using the properties of information measures developed, e.g., in [3]–[5], we analyze the
effect of signal constellations and input distributions on achievable rates for reliable
transmission. We observe that a discrete constellation with enough signal points and
optimized distribution enables reliable transmission close to the AWGN capacity. We
then use this insight in Chapter 6 to develop probabilistic amplitude shaping (PAS), a
transceiver architecture to combine non-uniform input distributions with forward error
correction (FEC).

In the chapters 7–10, we use information-theoretic arguments for finding achievable
rates and good transceiver designs. Our derivations are guided by two main goals:

• The achievable rates are based on transceiver designs that are implementable in
practice.

• The achievable rates are applicable for practical channels that we can measure,
but for which we do not have a tractable analytical description.

In Chapter 11, we develop techniques to estimate achievable rates from channel mea-
surements.
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2. Digital Communication System

2.1. Transmission System

A simple model of a digital transmission system is shown in Figure 2.1. At the trans-
mitter, data bits are mapped to a sequence of signal points, which are then transformed
into a waveform. The channel distorts the transmitted waveform. At the receiver, the
received waveform is transformed into a sequence of noisy signal points. This sequence
is then transformed into a sequence of detected data bit. The signal points and the noisy
signal points, respectively, form the interface between continuous-time and discrete-time
signal processing in the communication system. Modeling and analysis of the continuous-
time part and the conversion between discrete-time signals and continuous-time signals
is discussed in many textbooks. For example, an introduction to the representation of
continuous waveforms is given in [2, Chapter 4]. The conversion of continuous waveforms
into discrete-time sequences is discussed in [6, Chapter 4].

We treat the time-continuous part of the digital transmission system as part of a
channel with discrete-time input (the signal points) and discrete-time output (the noisy
signal points).

2.2. Figures of Merit

To design a transmission system, we must identify the figures of merit that we are
interested in. Common properties of interest are as follows.

• Rate: We want to transmit the data over the channel as fast as possible.

• Reliability: We want to recover the transmitted data correctly at the receiver.

• Delay: We want to be “real-time”.

• Power: We want to use as low power as possible/we want to comply with legal
power restrictions.

• Energy: We want to spend a small amount of energy to transmit a data packet.

To quantify the properties of interest, we consider block-based transmission, i.e., we
jointly consider n consecutive channel uses. See Figure 2.2 for an illustration. The
parameter n is called the block length or number of channel uses. Rate, reliability, delay,
power, and energy can now be quantified as follows.
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2. Digital Communication System

digital data
digital data to
signal points

signal points
to waveforms

x(t)

Channel

y(t)

detected
digital
data

noisy sig-
nal points to
digital data

waveforms
to noisy sig-
nal points

discrete time continuous time

Figure 2.1.: A generic model of a digital communication system.

Rate The rate is defined as

R =
number of transmitted bits

number of channel uses
. (2.1)

Since we consider n channel uses, the number of bits that we transmit per block is nR.
This bit string can take 2nR different values. We frequently model the data by a random
variable W with alphabet {1, 2, . . . , 2nR}. We call W the message.

Reliability At the transmitter, we encode the messageW to a signalXn = (X1, X2, . . . , Xn).
At the receiver, we choose a Ŵ from the hypotheses 1, 2, . . . , 2nR according to some de-
cision rule based on our observation Y n of the signal. We loosen the requirement of
“correctly recovering the data at the receiver” to “correct recovery with high proba-
bility” and we measure reliability by the block error probability that our decision Ŵ is
equal to the transmitted message W , i.e.,

Pe := Pr(W 6= Ŵ ). (2.2)

Delay For optimal detection, before we have a decision for the first bit of the nR bits
represented by W , we need to wait for the nth signal point Yn. The delay is therefore the
duration of n channel uses. (A practical system needs additional time for processing).

Power With the real signal point x, we associate the power x2, see Figure 2.3 for why
this makes sense. We can define the power in different ways.

12



2.2. Figures of Merit

W Encoder X1X2 . . . Xn

Y1Y2 . . . Yn

Channel

DecoderŴ

Figure 2.2.: Block-based transmission over a discrete-time channel. The message W can
take the values 1, 2, . . . , 2nR, which can be represented by nR bits. The
message W is encoded to a discrete signal Xn = xn(W ). The decoder
detects the message from the observed channel output Y n and outputs a
decision Ŵ .

1Ω x Volt

Figure 2.3.: We can think of the input x as the voltage over a unit resistance. Since
power = current × voltage, we have the power = x2/1 Watts by Ohm’s law.

• We say a system has peak power at most P if

x2 ≤ P, for each transmitted signal point x. (2.3)

• A system has per-block power at most P if∑n
i=1 x

2
i

n
≤ P, for each transmitted signal xn. (2.4)

• A system has average power at most P if the average per-block-power is upper
bounded by P, i.e., if

E [
∑n

i=1 X
2
i ]

n
≤ P. (2.5)

Note that the three power constraints are ordered, namely (2.3) implies (2.4), and (2.4)
implies (2.5). In particular, requiring the per-block power to be smaller than P is more
restrictive than requiring an average power to be smaller than P. The most important
notion of power is the average power. In the following, we will use the terms “power”
and “average power” interchangeably.
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2. Digital Communication System

Example 2.1 (BPSK). Suppose the transmitted signal points take one of the two
values {−A,A}. This modulation scheme is called binary phase shift keying (BPSK).
For BPSK the peak power, the per-block power, and the average power are all equal
to A2, independent of the block length n.

Example 2.2 (4-ASK). Suppose the transmitted signal points take on values in

{−3A,−A,A, 3A}

with equal probability. This modulation scheme is usually called amplitude shift
keying (ASK) although both amplitude and phase are modulated. The peak power
of this scheme is 9A2. The signal with highest per-block power is the one that has
all signal points equal to 3A or −3A. The average power of the considered scheme
is

1

2
A2 +

1

2
9A2 = 5A2 (2.6)

which is significantly less than the peak power and the highest per-block power.

Example 2.3 (Block-Based Transmission). Suppose the block length is n = 4 and
the signal points take values in a 3-ASK constellation X = {−1, 0, 1}. Suppose
further that the message W is uniformly distributed on W = {1, 2, . . . , 8} and that
the encoder f : W → C ⊆ {−1, 0, 1}n is given by

1 7→ (−1, 0, 0, 1)

2 7→ (−1, 1, 0, 0)

3 7→ (0,−1, 0, 1)

4 7→ (0, 0,−1, 1)

5 7→ (0, 1,−1, 0)

6 7→ (0, 1, 0,−1)

7 7→ (1,−1, 0, 0)

8 7→ (1, 0, 0,−1).

The rate of this scheme is

R =
3

4

[
bits

channel use

]
. (2.7)

The peak power is 1, the per-block power is 0.5 for each code word in C and con-
sequently, the average power is also equal to 1

2
. Let X1X2X3X4 := f(W ) be the
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2.3. Data Interface

transmitted signal. The distribution of Xi, i = 1, 2, 3, 4 is

PXi(−1) = PXi(1) =
1

4
, PXi(0) =

1

2
. (2.8)

Energy We quantify energy by Eb, which is the energy that we spend to transmit one
bit of data. We have

Eb =
energy

bit
=

energy

channel use
· channel use

bit
=

power

rate
=

P

R
. (2.9)

2.3. Data Interface

The data to be transmitted is often modelled by a sequence of independent and uniformly
distributed bits. For block-based transmission, this binary stream is partitioned into
chunks of nR bits each, which represent the messages that we transmit per block. Each
message is usually modelled as uniformly distributed. This is a good model for many
kinds of digital data, especially when the data is in a compressed format such as .zip
or .mp3. Separating the real world data from the digital transmission system by a
binary interface is often referred to by source/channel separation. This principle allows
to separately design source encoders (i.e., compression algorithms) and transmission
systems. The separation of source encoding and transmission implies virtually no loss
in performance, see for example [4, Section 7.13] and [2, Chapter 1].

2.4. Capacity

We now want to relate reliability, power, and rate. Consider the transmission system in
Figure 2.2. It consists of an encoder that maps the nR bit message W to the signal Xn

and a decoder that maps the received signal Y n to a decision Ŵ .

Definition 1 (Achievable). We say the rate R is achievable under the power constraint
P, if for each ε > 0 and a large enough block length n(ε), there exists a transmission sys-
tem with 2n(ε)R code words with an average power smaller or equal to P and a probability
of error smaller than ε, i.e.,

Pe = Pr(W 6= Ŵ ) < ε.

The capacity of a channel is the supremum of all achievable rates. For some chan-
nels, the channel capacity can be calculated in closed form. For example, for discrete
memoryless channels with input-output relation

PY n|Xn(bn|xn) =
n∏
i=1

PY |X(bi|ai), an ∈ X n, bn ∈ Yn (2.10)

15



2. Digital Communication System

the capacity is

max
X : E(X2)≤P

I(X;Y ) (2.11)

where I(X;Y ) is the mutual information defined in Appendix C.5. The capacity result
(2.11) also holds for continuous output memoryless channels with discrete input and
with continuous input. In Section 3.4, we discuss the capacity formula of the memoryless
AWGN channel.

An important step in the derivation of this result is to show that for any δ > 0, the
value I(X;Y )− δ is an achievable rate in the sense of Definition 1. This suggests to call
I(X;Y ) an approachable rate rather than an achievable rate, since the requirements of
Definition 1 are only verified for I(X;Y ) − δ, not for I(X;Y ). In this work, we follow
the common terminology ignoring this subtlety and call I(X;Y ) an achievable rate, in
consistency with literature.

For a large class of channels, including many practical channels, achievable rates can
be estimated that provide a lower bound on the channel capacity. Achievability schemes
operating close to capacity is the main topic of theses notes and chapters 7–10 develop
such schemes in detail.

2.4.1. Channel Coding Converse for Memoryless Channels

We next state a converse result, namely that above a certain threshold, reliable commu-
nication is impossible. The derivation of converse results is in general involved; here, we
only consider the special case of memoryless channels. Our goal is to attach a first op-
erational meaning to the mutual information, which we will then study in detail for the
AWGN in the chapters 3–5 and which will serve as a guidance for transmitter design in
Chapter 6. The statement and proof of the converse result uses basic information mea-
sures, namely the entropy H(X) of a discrete random variable X, the binary entropy
function H2(P ) of a probability P , and the differential entropy h(Y ) of a continuous
random variable Y . The definitions and basic properties of these information measures
are stated in Appendix C.

Theorem 1 (Channel Coding Converse). Consider a transmission system with block
length n. The message W can take the values 1, 2, . . . , 2nR. The code word Xn = xn(W )
is transmitted over a memoryless channel pY |X . If

H(W )

n
>

∑n
i=1 I(Xi;Yi)

n
(2.12)

then the probability of error Pe = Pr(W 6= Ŵ ) is bounded away from zero.
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2.5. Problems

Proof. We have

H2(Pe) + Pe log2(2nR − 1)
(a)

≥ H(W |Ŵ )

= H(W )− I(W ; Ŵ )

(b)

≥ H(W )− I(Xn;Y n)

(c)
= H(W )−

[
h(Y n)−

n∑
i=1

h(Yi|Xi)
]

(d)

≥ H(W )−
n∑
i=1

[
h(Yi)− h(Yi|Xi)

]
= H(W )−

n∑
i=1

I(Xi;Yi)

where (a) follows by Fano’s inequality (C.18), (b) by the data-processing inequality
(C.41), (c) follows because the channel is memoryless and (d) follows by the independence
bound on entropy (C.12). Dividing by n, we have

H(W )

n
−
∑n

i=1 I(Xi;Yi)

n
≤ H2(Pe)

n
+ Pe

log2(2nR − 1)

n
≤ H2(Pe) + PeR.

That is, if H(W )/n >
∑n
i=1 I(Xi;Yi)

n
then Pe is bounded away from zero.

2.5. Problems

Problem 2.1. For the transmission scheme of Example 2.3, calculate the direct current
that results from one block transmission.
Problem 2.2. Let X1, X2, . . . , Xn be distributed according to the joint distribution PXn

(the Xi are possibly stochastically dependent). Show that

E [
∑n

i=1X
2
i ]

n
=

∑n
i=1 E[X2

i ]

n
. (2.13)
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3. AWGN Channel

3.1. Summary

• The discrete time AWGN channel is

Y = X + Z. (3.1)

• Y,X,Z are channel output, channel input, and noise, respectively.

• The input X and noise Z are stochastically independent.

• The noise Z is zero mean Gaussian with variance σ2.

• A real-valued random variable X has power E(X2).

• The SNR is snr = input power
noise power

.

• SNR in dB is 10 log10 snr.

• The capacity of the AWGN channel is

C(snr) =
1

2
log2(1 + snr)

[
bits

channel use

]
(3.2)

inverse: snr = C−1(R) = 22R − 1. (3.3)

• C(snr) is plotted in Figure 3.1.

• Phase transition at capacity: For a fixed snr∗, reliable communication at a rate R is
possible, if R < C(snr∗), and impossible, if R > C(snr∗). For a fixed rate R∗, reliable
communication is possible if snr > C−1(R∗) and impossible, if snr < C−1(R∗).

3.2. Channel Model

At each time instant i, we describe the discrete time memoryless AWGN channel by the
input-output relation

Yi = xi + Zi. (3.4)

The noisy signal point Yi is the sum of the signal point xi and the noise Zi. The
noise random variables {Zi, i ∈ Z} (Z denotes the set of integers) are independent and
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3. AWGN Channel

identically distributed (iid) according to a Gaussian density with zero mean and variance
σ2, i.e., the Zi have the probability density function (pdf)

pZ(z) =
1√

2πσ2
e−

z2

2σ2 , z ∈ R. (3.5)

The relation (3.4) can equivalently be represented by the conditional output pdf

pY |X(y|x) = pZ(y − x). (3.6)

We model the channel input as a random variable X that is stochastically independent
of the noise Z.

Discussion Using the model (3.4) to abstract the continuous-time part of the digital
transmission system can be justified in several ways. An in-depth treatment can be
found in [3, Chapter 8]. In [7], it is shown with mathematical rigor that, under certain
conditions, the Yi form a sufficient statistics, i.e., all the information about Xi that is
contained in the continuous-time received waveform is also contained in the discrete-
time noisy signal point Yi. This approach explicitly models the noise that gets added to
the waveform as white Gaussian noise. However, we can only “see” the noise through
filters. A second approach to justify (3.4) is therefore to build the digital transmission
system, perform a measurement campaign, and to find a reasonable statistical model
for the noise sequence Zi = Yi −Xi, where Xi is chosen at the transmitter and known
and where Yi is measured at the receiver. For instance, this approach was used in [8] to
derive a channel model for ultra-wideband wireless communication. Finding the “true”
channel description is often difficult. A third approach is to design systems that operate
as if the channel would be an AWGN channel. This leads to a mismatch between the
actual channel and the channel assumed by the transceiver. The mismatched approach
is an effective method for designing communication systems for practical channels and
we use it in the chapters 7–11. We use “the channel assumed by the transceiver” and
“decoding metric” as synonyms.

3.3. Signal-to-Noise Ratio and Eb/N0

SNR Consider the AWGN channel model

Y = X + Z (3.7)

where Z is Gaussian noise with variance σ2. We scale (3.7) by some constant κ. The
resulting input-output relation is

κ · Y︸ ︷︷ ︸
=:Ỹ

= κ ·X︸ ︷︷ ︸
=:X̃

+κ · Z︸︷︷︸
=:Z̃

(3.8)

which gives us a modified channel model

Ỹ = X̃ + Z̃. (3.9)
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3.4. Capacity

Suppose the power of X is E(X2) = P. The power of X̃ is then κ2P, so the transmitted
signal in (3.9) has a power that is different from the power of the transmitted signal in
(3.7). The power of the noise has also changed, namely from σ2 in (3.7) to κ2σ2 in (3.9).
What remains constant under scaling is the SNR, which is defined as

snr :=
signal power

noise power
. (3.10)

The SNR is unitless, so if the signal power is P Watts and the noise power is σ2 Watts,
then the SNR is P/σ2 (unitless). The SNR is often expressed in decibel (dB), which is
defined as

SNR in dB = snrdB = 10 log10 snr. (3.11)

Eb/N0 The relation of signal power and noise power can alternatively be expressed by
the Eb/N0. As defined in (2.9), Eb is the energy we spend to transmit one message bit .
N0 is the noise variance per two dimensions, i.e., if the noise variance per channel use is
σ2, then N0 = 2σ2. We can express Eb/N0 in terms of SNR by

Eb/N0 =
P

R
· 1

2σ2
=

P

σ2
· 1

2R
=

snr

2R
(3.12)

where R is the rate as defined in (2.1). In decibel, Eb/N0 is

Eb/N0 in dB = 10 log10(Eb/N0). (3.13)

3.4. Capacity

Recall the capacity result (2.11), which says that for a power constraint P, the capacity
of a memoryless channel is

max
X : E(X2)≤P

I(X;Y ). (3.14)

We denote the maximizing input random variable by X∗. For the AWGN channel, by
Problem 3.3, X∗ has a Gaussian density with zero mean and variance P.

Theorem 2 (AWGN Capacity). For the AWGN channel with power constraint P and
noise variance σ2, the capacity-power function is

C(P/σ2) =
1

2
log(1 + P/σ2). (3.15)

In other words, we have the following result.

1. (Converse) No rate R > C(P/σ2) is achievable by a system with average power less
or equal to P.

2. (Achievability) Any rate R < C(P/σ2) is achievable by a system with average power
P.

We provide a plot of the capacity-power function in Figure 3.1.
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3. AWGN Channel
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Figure 3.1.: The capacity-power function.

3.5. Problems

Problem 3.1. Let X and Z be stochastically independent Gaussian random variables
with means µ1, µ2 and variances σ2

1, σ
2
2. Show that Y = X + Z is zero mean Gaussian

with mean µ1 + µ2 and variance σ2
1 + σ2

2.
Hint: Use that for two independent real-valued random variables pX , pZ , the pdf of the
sum is given by the convolution of pX with pZ .
Problem 3.2. Let X have density pX with mean µ and variance σ2. Let Y be Gaussian
with the same mean µ and variance σ2. Show that h(Y ) ≥ h(X) with equality if and
only if X has the same density as Y , i.e., if X is also Gaussian.
Hint: You can use the information inequality (C.21) in your derivation.
Problem 3.3. Consider the AWGN channel Y = X + Z, where Z is Gaussian with
zero mean and variance σ2, where X and Z are stochastically independent, and where
E(X2) ≤ P. Show that

I(X;Y ) ≤ 1

2
log(1 + P/σ2). (3.16)

For which pdf pX is the maximum achieved?
Hint: You can use Problem 3.1 and Problem 3.2 in your derivation.
Problem 3.4. Consider two (SNR,rate) operating points (snr1,C(snr1)) and (snr2,C(snr2))
on the power-rate function.

1. Investigate the dependence of the SNR gap in dB on the rate gap for high SNR,
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3.5. Problems

i.e., to which value does the ratio

10 log10(snr2)− 10 log10(snr1)

C(snr2)− C(snr1)
(3.17)

converge for snr2, snr1 →∞?

2. To which value does (3.17) converge for P2,P1 → 0?

3. Answer the questions 1. and 2. when Eb/N0 in dB is used in (3.17) instead of the
SNR in dB.

Problem 3.5.

1. To which value does Eb/N0 in dB converge when the SNR approaches −∞?

2. What is the minimum energy we need to transmit one bit reliably over the AWGN
channel?

3. How long will the transmission of one bit with minimum energy take?
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4. Shaping Gaps for AWGN

For the AWGN channel, we have

Y = X + Z (4.1)

with noise variance σ2 and input power constraint P. We want to characterize the loss of
mutual information of an input X and an output Y that results from not using Gaussian
input. We consider the following three situations.

1. The input is not Gaussian.

2. The input is continuous and uniformly distributed.

3. The input is discrete and uniformly distributed.

See Figure 4.1 for an illustration of the considered input distributions.

4.1. Summary

• The ASK constellation with M signal points (M -ASK) is

X = {±1,±3, . . . ,±(M − 1)}. (4.2)

• Let X be uniformly distributed on X .

• The channel input is ∆X where ∆ is a positive real number; the input power is
∆2 E(X2).

• An achievable rate is

I(X;Y ) = I(X; ∆X + Z). (4.3)

• Achievable rates for 2m-ASK are plotted in Figure 4.3. Observations:

– Ungerboeck’s rule of thumb [9]: The 2m-ASK curves stay close to capacity
for rates smaller than m− 1.

– The 2m-ASK curves saturate at m bits for large SNR.

– Shaping gap: with increasing m, a gap to capacity becomes apparent. The
gap is caused by the uniform input distribution over the set of permitted
signal points. The gap converges to 1.53 dB, asymptotically in the ASK
constellation size and the SNR.
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4. Shaping Gaps for AWGN

x

pX∗

pXu

PXM

Figure 4.1.: The Gaussian density pX∗ , the uniform density pXu and the uniform distri-
bution PXM on a discrete M -ASK constellation. The densities pX∗ , pXu and
the distribution PXM have the same variance.

4.2. Non-Gaussian Input

By Problem 3.3, the capacity-achieving density pX∗ of the AWGN channel with power
constraint P is zero mean Gaussian with variance P. When pX∗ is used for the channel
input, the resulting output Y ∗ = X∗ + Z is zero mean Gaussian with variance P + σ2,
see Problem 3.1. Let now X be a channel input, discrete or continuous, with zero mean
and variance P. We expand the mutual information as

I(X;Y ) = h(Y )− h(Y |X). (4.4)

For the conditional differential entropy, we have

h(Y |X)
(a)
= h(Y −X|X) (4.5)

= h(Z|X) (4.6)

(b)
= h(Z) =

1

2
log2(2πeσ2) (4.7)

where (a) follows by (C.9) and where (b) follows because X and Z are independent.

Remark 1. We calculated the right-hand side of (4.7) using the definition of differential
entropy (C.5). Since σ2 = E(Z2) is the noise power, it should have the unit Watts.
However, the argument of the logarithm must be unitless. In Problem 4.11, we provide
an alternative definition of differential entropy, which works with units. Using the alter-
native differential entropy definition does not alter the results presented in this chapter.

By (4.7), the term h(Y |X) does not depend on how the input X is distributed. How-
ever, the differential entropy h(Y ) does depend on the distribution of X. For continuous
X, the density of Y is given by

pY (y) =

∫ ∞
−∞

pX(x)pZ(y − x) dx = (pX ? pZ)(y) (4.8)

that is, pY is the convolution of pX and pZ . If X is discrete, the density pY is given by

pY (y) =
∑
x∈X

PX(x)pZ(y − x). (4.9)
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4.3. Uniform Continuous Input

The differential entropy h(Y ) is a functional of the density pY and it is in general difficult
to derive closed-form expressions. We next write h(Y ) as

h(Y )
(a)
= h(Y ∗)− D(pY ‖pY ∗) (4.10)

where (a) is shown in Problem 4.4. We can now write I(X;Y ) as

I(X;Y ) = h(Y )− h(Y |X) (4.11)

(a)
= h(Y )− h(Z) (4.12)

(b)
= h(Y ∗)− D(pY ‖pY ∗)− h(Z) (4.13)

(c)
= [h(Y ∗)− h(Y ∗|X∗)]− D(pY ‖pY ∗) (4.14)

= C(P/σ2)− D(pY ‖pY ∗) (4.15)

where we used (4.7) in (a) and (c) and (4.10) in (b). We make the following two
observations.

• The loss of mutual information when using X instead of X∗ is the informational
divergence D(pY ‖pY ∗) between the resulting output distributions.

• The loss can be small even if X differs significantly from X∗ as long as the resulting
output distribution pY is similar to pY ∗ . See also Problem 4.6.

We next consider two constraints on the input. First, we let X be uniformly distributed
on a continuous finite interval, and second, we let X be uniformly distributed on a
discrete ASK constellation.

4.3. Uniform Continuous Input

Let Xu be an input that is uniformly distributed on a finite interval [−A,A] where A
is such that the variance of Xu is equal to P. Denote by Yu the corresponding output.
Recall that the noise variance is σ2 and the SNR is snr = P/σ2.

Lower Bound

We bound

I(Xu;Yu)
(a)
= C(snr)− D(pYu‖pY ∗) (4.16)

(b)

≥ C(snr)− D(pXu‖pX∗) (4.17)

(c)
= C(snr)− [h(X∗)− h(Xu)] (4.18)

(d)
= C(snr)− 1

2
log2

πe

6
(4.19)
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4. Shaping Gaps for AWGN
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Figure 4.2.: The dashed line shows the lower bound (4.19) for continuous uniformly
distributed input.

where (a) follows by (4.15), where (b) follows by Problem 4.6, where (c) follows by
Problem 4.4, and where (d) follows by Problem 4.5. The inequality D(pXu‖pX∗) ≥
D(pYu‖pY ∗) that we used in (b) is a data processing inequality, see [5, Lemma 3.11]. We
make the following observation.

• The loss of mutual information because of a uniform input density is at most
1
2

log2
πe
6

independent of the SNR snr. The value 1
2

log2
πe
6

is sometimes called the
shaping gap.

We can also express (4.19) as

I(Xu;Yu) = h(Xu)− h(Xu|Yu) (4.20)

≥ h(Xu)−
1

2
log2

(
2πe

P

1 + P/σ2

)
(4.21)

which shows that the conditional entropy of Xu is bounded from above by

h(Xu|Yu) ≤
1

2
log2

(
2πe

P

1 + P/σ2

)
. (4.22)

Upper Bound

We next want to show that the shaping gap (4.19) is tight, i.e., that for large SNR, the
lower bound (4.19) holds with equality. To this end, we will derive an upper bound for
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4.4. Finite Signal Constellations

I(Xu;Yu) that approaches (4.19) from above when the SNR approaches infinity. Note
that because Xu is uniformly distributed on [−A,A], it fulfills the peak-power constraint

|Xu| ≤ A. (4.23)

We can thus use the following mutual information upper-bound for input with peak
power A:

supp pX ⊆ [−A,A]⇒ I(X;Y ) ≤ log2

(
1 +

√
2A2

πeσ2

)
. (4.24)

This bound is stated in [10] and proven in [11], see also [12]. Note that the bound holds
also for non-uniformly distributed input.

Since E(X2
u) = A2/3 = P, we have A2 = 3P. We can now bound the shaping gap from

below by

C(P/σ2)− I(Xu;Yu) ≥ C(P/σ2)− log2

(
1 +

√
6P

πeσ2

)
(4.25)

=
1

2
log2(1 + snr)− 1

2
log2

(
1 + 2

√
6snr

πe
+

6snr

πe

)
(4.26)

=
1

2
log2

1 + snr

1 + 2
√

6snr
πe

+ 6snr
πe

(4.27)

=
1

2
log2

1
snr

+ 1

1
snr

+ 2
√

6
πesnr

+ 6
πe

(4.28)

snr→∞→ 1

2
log2

πe

6
. (4.29)

Thus, asymptotically in the SNR, the shaping gap lower bound is tight, i.e., it approaches
the upper bound 1

2
log2

πe
6

. Summarizing, we have

C(snr)− I(Xu;Yu) ≤
1

2
log2

πe

6
(for any SNR) (4.30)

lim
snr→∞

C(snr)− I(Xu;Yu) =
1

2
log2

πe

6
. (4.31)

4.4. Finite Signal Constellations

For notational convenience, we deviate in this section from our standard notation (4.2)
for M -ASK constellations and define

X = {±∆,±3∆, . . . ,±(M − 1)∆} (4.32)
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4. Shaping Gaps for AWGN

so that the channel input is X (instead of X∆). Let XM be uniformly distributed on
X . The resulting power is

P = E(X2
M) = ∆2M

2 − 1

3
(4.33)

see Table 4.1.

Theorem 3 (Uniform Discrete Input Bound). The mutual information achieved by XM

is lower bounded by

I(XM ;YM) ≥ 1

2
log2

(
12P

M2

M2 − 1

)
− 1

2
log2

[
2πe

(
P

M2 − 1
+

P

1 + P/σ2

)]
(4.34)

> C(snr)− 1

2
log2

πe

6
− 1

2
log2

[
1 +

(
2C(snr)

M

)2
]

(4.35)

where snr = P/σ2.

Proof. We prove the theorem in Section 4.5.

Our input XM is suboptimal in two ways. First, it is restricted to the set X of
M equidistant points, and second, XM is distributed uniformly on X . Because of our
result from Section 4.3 for uniform inputs, the mutual information is bounded away
from capacity by 1

2
log2

πe
6
≈ 0.255 bits independent of how large we choose M . Let’s

see how M needs to scale with C(snr) so that the resulting mutual information is within
a constant gap of capacity. To keep the finite constellation loss within the order of the
distribution loss of 0.255 bits, we calculate

1

2
log2

[
1 +

(
2C(snr)

M

)2
]
≤ log2 e

2

(
1

M · 2−C(snr)

)2

=
1

4
(4.36)

⇔M = 2C(snr)+ 1
2

+ 1
2

log2 log2 e (4.37)

where we used log2 x = log2(e) log(x) ≤ log2(e)(x − 1). We conclude from (4.37) that
the mutual information is within 0.5 bit of capacity if

log2M ≈ C(snr) + 0.77. (4.38)

This condition can be confirmed in Figure 4.3, where we display rate curves and bounds
for ASK constellations with uniformly distributed input.

4.5. Proof of Uniform Discrete Input Bound

We can expand mutual information in two ways, namely

I(XM ;YM) = h(YM)− h(YM |XM) = H(XM)−H(XM |YM) (4.39)
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4.5. Proof of Uniform Discrete Input Bound
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Figure 4.3.: The dotted curves show the bound (4.35) from Theorem 3. The gap between
the dotted curves and the capacity-power function confirms the condition
(4.38). The dashed line shows the lower bound (4.19) for continuous uni-
formly distributed input. Note that for low SNR, the rate curves for ASK
are close to the capacity-power function, while for high SNR, the dashed
curve becomes a tight lower bound, i.e., for high SNR and large ASK con-
stellations, the shaping gap of 1

2
log2

πe
6

becomes apparent.
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4. Shaping Gaps for AWGN

X̃

U

+ XM +

Z

YM

Figure 4.4.: U is uniformly distributed on [−∆,∆] and X̃ is uniformly distributed on
[−∆M,∆M ].

where we know

h(YM |XM) = h(Z) =
1

2
log2(2πeσ2) (4.40)

H(XM) = log2M (4.41)

but we have no insightful expressions for h(YM) and H(XM |YM). We want to lower bound
I(XM ;YM), so we can either lower bound h(YM) or we can upper bound H(XM |YM).
Following [13], we opt for upper bounding H(XM |YM). We do this in two steps:

1. We introduce an auxiliary continuous random variable X̃ that is a function of XM ,
so that I(XM ;YM) ≥ I(X̃;YM) by the data processing inequality (C.41).

2. We upper bound h(X̃|YM) by using a conditional version of the information in-
equality (C.21).

Step 1: Auxiliary Continuous Input X̃ The random variable XM is discrete. To make
our life easier, we first introduce an auxiliary random variable. Let U be continuous and
uniformly distributed on [−∆,∆) and define

X̃ := XM + U. (4.42)

We provide an illustration in Figure 4.4. From the definitions of XM and U , it follows
that X̃ is continuous and uniformly distributed on [−∆M,∆M). Since X̃ ◦ XM ◦ YM
form a Markov chain, we have by the data processing inequality (C.41)

I(XM ;YM) ≥ I(X̃;YM) (4.43)

= h(X̃)− h(X̃|YM). (4.44)

For the differential entropy h(X̃), we have

h(X̃) = log2(2M∆) =
1

2
log2(4M2∆2) =

1

2
log2

12M2P

M2 − 1
(4.45)

where we used Table 4.1. Inserting the right-hand side of (4.45) in (4.44), we have

I(XM ;YM) ≥ 1

2
log2

12M2P

M2 − 1
− h(X̃|YM). (4.46)

In the next paragraph, we replace h(X̃|YM) by an insightful upper bound.
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4.5. Proof of Uniform Discrete Input Bound

E(X2
M) = P = (M2−1)∆2

3

E(U2) = ∆2

3

E(X̃2) = (M∆)2

3

Table 4.1.: Powers of XM , U , and X̃ as derived in Problem 4.3.

Step 2: Bounding h(X̃|YM). By Problem 4.7, we have

h(X̃|YM) = E[− log2 pX̃|YM (X̃|YM)] (4.47)

≤ E[− log2 q(X̃|YM)] (4.48)

for any q(·|·) with the property that q(·|y) is a density on R for every y ∈ R. We choose
a Gaussian density with mean ky and variance s2, i.e., we choose

q(x|y; k, s2) :=
1√
2πs

exp

[
−(x− ky)2

2s2

]
. (4.49)

This gives

h(X̃|YM) ≤ log2(e)

(
1

2
ln(2πs2) +

1

2s2
E[(X̃ − kYM)2]

)
. (4.50)

We calculate the expectation.

E[(X̃ − kYM)2] = E[(XM + U − k(XM + Z))2] (4.51)

= E[((1− k)XM + U − kZ)2] (4.52)

(a)
= P +

∆2

3
− 2kP + k2(P + σ2) (4.53)

where the reader is asked to verify (a) in Problem 4.8. We can now write the bound for
the conditional entropy of X̃ as

h(X̃|YM) ≤ log2(e)

(
1

2
ln(2πs2) +

1

2s2

[
P +

∆2

3
− 2kP + k2(P + σ2)

])
. (4.54)

In Problem 4.8, we minimize this expression over the parameters k and s2. The solution
is k = P

P+σ2 and s2 = ∆2

3
+ P

1+P/σ2 and the minimized bound is

h(X̃|YM) ≤ 1

2
log2

[
2πe

(
∆2

3
+

P

1 + P/σ2

)]
. (4.55)

Remark 2. We can express ∆ in terms of M and P, namely

∆2 =
3P

M2 − 1
. (4.56)
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4. Shaping Gaps for AWGN

Thus, we have

h(X̃|YM) ≤ 1

2
log2

[
2πe

(
P

M2 − 1
+

P

1 + P/σ2

)]
(4.57)

M→∞→ ≤ 1

2
log2

[
2πe

P

1 + P/σ2

]
. (4.58)

Thus, as the number of signal points approaches infinity, our upper bound on h(X̃|YM)
approaches our upper bound (4.22) on h(Xu|Yu).
Remark 3. We can show that we have equality in (4.43), i.e., I(XM ;YM) = I(X̃;YM).
The reason is that XM is a deterministic function of X̃. Formally, note that U = X̃−XM

and Z = YM −XM and by definition X̃ = XM +U and YM = XM +Z. Thus, by (C.40),
we have

I(X̃;YM |XM) = I(X̃, U ;YM , Z|XM) = I(U ;Z|XM)
(a)
= 0 (4.59)

where (a) follows because XM , Z, U are stochastically independent. Thus, we have

I(X̃;YM)
(a)
= I(X̃,XM ;YM) (4.60)

(b)
= I(XM ;YM) + I(X̃;YM |XM) (4.61)

(c)
= I(XM ;YM) (4.62)

where (a) follows by (C.40) (XM is a function of X̃), where (b) follows by (C.39), and
where (c) follows by (4.59). This proves the equality.

4.6. Problems

Problem 4.1. Derive (4.8) by using the definitions of density (B.1) and expectation
(B.4) and the law of total probability (B.5). Hint: Show that

Pr(Y ≤ y) =

∫ y

−∞

∫ ∞
−∞

pX(x)pZ(τ − x) dx dτ. (4.63)

Problem 4.2. Show that if the channel input X takes values in an M -ASK constellation,
then the mutual information of channel input X and channel output Y is upper bounded
by log2M .
Problem 4.3. Let X be uniformly distributed on [−A,A]. Show that

Var(X) =
A2

3
. (4.64)

Problem 4.4. Let X be some continuous random variable with zero mean and variance
P. Let X ′ be zero mean Gaussian with variance P. Show that

h(X ′)− h(X) = D(pX‖pX′). (4.65)

Problem 4.5. LetX andX ′ be continuous random variables with zero mean and variance
P. Suppose X is distributed uniformly on [−d, d] and let X ′ be Gaussian.
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4.6. Problems

1. Show that

h(X) =
1

2
log2(12P) (4.66)

h(X ′) =
1

2
log2(2πeP). (4.67)

2. Show that

h(X ′)− h(X) =
1

2
log2

πe

6
. (4.68)

Problem 4.6. Let pX and pX′ be two densities defined on X . Let pY |Z be a conditional
density where Z takes values in X . Define

pXY (a, b) = pX(a)pY |Z(b|a) (4.69)

pX′Y ′(a, b) = pX′(a)pY |Z(b|a) (4.70)

Show that

D(pY ‖pY ′) ≤ D(pX‖pX′). (4.71)

Hint: Use the chain rule of informational divergence (C.25) and the information inequal-
ity (C.21).
Problem 4.7.

1. Let pX be a density and let q be some other density with q(a) = 0 ⇒ pX(a) = 0,
i.e., supp pX ⊆ supp q. Show that

h(X) = E[− log2 pX(X)] ≤ E[− log2 q(X)] (4.72)

where all expectations are taken with respect to pX .

2. Let now pXY = pXpY |X be a joint density and for each x ∈ supp pX , let q(·|x) be
a density on R with supp pY |X(·|x) ⊆ supp q(·|x). Use the result from 1. to show
that

h(Y |X) = E[− log2 pY |X(Y |X)] ≤ E[− log2 q(Y |X)]. (4.73)

Problem 4.8. Verify (4.53), (4.55), and (4.35).
Problem 4.9. Use the bounding technique from Problem (4.7) with the Ansatz (4.49)
for an alternative derivation of the bound (4.19).
Problem 4.10. Show that the gap in SNR in dB between the bound (4.19) and the
capacity-power function approaches approximately 1.53 dB when the SNR goes to in-
finity.
Problem 4.11. Let Z be zero mean Gaussian with variance σ2 with unit Watts, i.e., Z
has unit

√
Watt.
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4. Shaping Gaps for AWGN

1. Show that if the variance σ2 has unit Watts, then the density pZ has unit 1/
√

Watt.

2. Consider the probability Pr(a ≤ Z ≤ b) =
∫ b
a
pZ(τ) dτ . Verify that the probability

is unitless if dτ has the same unit as Z.

3. Define differential entropy as alternative to (C.5) by

hr(Z) = E [− log2[pZ(Z)rZ ]] (4.74)

where rZ is a constant with the same unit as Z.

4. Show that

hr(Z) =
1

2
log2

2πeσ2

r2
Z

. (4.75)

Note that the argument of the logarithm is unitless, fixing the issue raised in
Remark 1.

5. For two continuous random variables X, Y with pdf pXY , show that

I(X;Y ) = hr(X)− hr(X|Y ). (4.76)

6. (Problem 4.5 revisited) Let X and X ′ be continuous random variables with zero
mean and variance P. Suppose X is distributed uniformly on [−d, d] and let X ′

be Gaussian.

a) Calculate hr(X) and hr(X
′).

b) Show that

hr(X
′)− hr(X) =

1

2
log2

πe

6
. (4.77)
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5. Non-Uniform Discrete Input
Distributions for AWGN

In this chapter, we consider non-uniform input distributions on ASK constellations.

5.1. Summary

• For ASK input, the achievable rate I(X; ∆X + Z) should be maximized over the
input distribution PX and the constellation scaling ∆.

• The shaping gap is virtually removed if the ASK signal points are used with a
sampled Gaussian distribution, which is also called the Maxwell-Boltzmann (MB)
distribution.

5.2. Capacity-Achieving Input Distribution

Consider an ASK constellation with M signal points (we restrict M to even integers; in
practice, M is usually a power of two) given by

X = {±1,±3, . . . ,±(M − 1)}. (5.1)

Let X be a random variable with distribution PX on X . We use X scaled by ∆ > 0 as
the channel input of an AWGN channel. The resulting input/output relation is

Y = ∆X + Z. (5.2)

The mutual information of the channel input and channel output is

I(∆X;Y )
(a)
= I(∆X; ∆X + Z) (5.3)

(b)
= I(X; ∆X + Z) (5.4)

where (a) follows by (5.2) and where (b) follows by (C.40) and because (∆X) is a
deterministic function of X and X is a deterministic function of (∆X). If the input is
subject to an average power constraint P, the scaling ∆ and the distribution PX need
to be chosen such that the constraint

E[(∆X)2] ≤ P (5.5)
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5. Non-Uniform Discrete Input Distributions for AWGN

is satisfied. The ASK capacity-power function is now given by

Cask(P/σ2) = max
∆,PX : E[(∆X)2]≤P

I(X; ∆X + Z). (5.6)

To evaluate the ASK capacity-power function numerically, we have to maximize the
mutual information I(X; ∆X + Z) both over the scaling ∆ of the signal points and the
input distribution PX . In the optimization we need to account for the power constraint
(5.5).

1. For a fixed scaling ∆, the mutual information is concave in PX . There is no closed
form expression for the optimal input distribution, but the maximization over PX
can be done efficiently using the Blahut-Arimoto Algorithm [14], [15]. (In these
papers, the Blahut-Arimoto algorithm is formulated for finite output alphabets
and it can be easily adapted to the case of continuous output.)

2. The mutual information maximized over PX is now a function of the scaling ∆.
We optimize ∆ in a second step.

3. General purpose optimization software can also be used to solve (5.6).

We denote the optimal scaling by ∆∗ and the corresponding distribution by PX∗ .

5.3. Maxwell-Boltzmann Input Distribution

To calculate one point of the ASK capacity-power function, we need to solve (5.6) which
may require too much computing power if we have to do it many times. As we will see,
a suboptimal input distribution is good enough and the resulting rate-power function
is very close to the ASK capacity-power function. Note that the suboptimal input
distribution also provides a good starting point for accelerating the computation of the
ASK capacity-power function by (5.6).

Entropy-Maximizing Input Distribution

The mutual information can be expanded as

I(X; ∆X + Z) = H(X)−H(X|∆X + Z). (5.7)

For a fixed ∆, we choose the input distribution PX∆
that maximizes the input entropy

subject to our power constraint, i.e., we choose

PX∆
= argmax

PX : E[(∆X)2]≤P
H(X). (5.8)

For each xi ∈ X , i = 1, 2, . . . ,M , define

PXν (xi) = Aνe
−νx2

i , Aν =
1∑M

i=1 e
−νx2

i

. (5.9)
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5.3. Maxwell-Boltzmann Input Distribution

target rate SNR for P♣X SNR for PX∗ SNR Gap

16-ASK 2.9861 bits 18.0010 dB 18.0000 dB 9.7445 · 10−4 dB
32-ASK 3.9839 bits 24.0674 dB 24.0000 dB 6.743 · 10−2 dB

Table 5.1.: SNR Gap between the suboptimal input X♣ and the capacity-achieving in-
put X∗. The values for X∗ were calculated by using the Blahut-Arimoto
Algorithm.

target rate SNR uniform X SNR X♣ Gain

4-ASK 1.0000 bits 5.1180 dB 4.8180 dB 0.3000 dB
8-ASK 2.0000 bits 12.6186 dB 11.8425 dB 0.7761 dB

16-ASK 3.0000 bits 19.1681 dB 18.0911 dB 1.0770 dB
32-ASK 4.0000 bits 25.4140 dB 24.1708 dB 1.2432 dB

Table 5.2.: Shaping gains of X♣ over the uniform input distribution for ASK
constellations.

The distributions PXν are called MB distributions or sampled Gaussian distributions .
The definition of Aν ensures that the probabilities assigned by PXν add up to 1. In
Problem 5.3, we show that PX∆

defined by (5.8) is given by

PX∆
(xi) =PXν (xi) with ν : E[(∆Xν)

2] = P. (5.10)

We show in Section 5.4 that E[(Xν)
2] is strictly monotonically decreasing in ν. Thus, the

ν for which the condition (5.10) is fulfilled can be found efficiently by using the bisection
method .

Maximizing Mutual Information

For each constellation scaling ∆, the distribution PX∆
satisfies the power constraint. We

now maximize the mutual information over all input distributions from this family, i.e.,
we solve

max
∆

I(X∆; ∆X∆ + Z). (5.11)

We denote the best scaling by ∆♣, the resulting input distribution by PX♣ , and the
corresponding input and output by X♣ and Y ♣, respectively. We provide numerical
results in Figure 5.1 and Table 5.1. We observe that our suboptimal input X♣ virtually
achieves ASK capacity. In Table 5.2, we display the shaping gains of our suboptimal
input X♣ over uniformly distributed input. For increasing target rates and constellation
sizes, the shaping gains approach the ultimate shaping gain of 1.53 dB, see Problem 4.10.
In particular, for 32-ASK and 4 bits per channel use, the shaping gain is 1.24 dB.
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0 5 10 15 20 25 30 35
0

1

2

3

4

5

SNR in dB

b
it
s
p
er

ch
a
n
n
el

u
se

C(P/σ2)
32-ASK

16-ASK

8-ASK

4-ASK

Figure 5.1.: Rate curves for the non-uniform input X♣ (solid lines in color). The corre-
sponding dashed curves display the rates achieved by uniform input. The
curves for X♣ are very close to the ASK capacity-power function (not dis-
played). See Table 5.1 for a numerical comparison of our heuristic X♣ and
the capacity-achieving input X∗.

5.4. Proof of Power Monotonicity

Let f : X → R be a function that assigns to each symbol a ∈ X a finite real value
f(a) ∈ R. For instance, in (5.9), we used the function a 7→ a2. Let Xν be a random
variable with distribution

PXν (a) =
e−νf(a)∑

a′∈X e
−νf(a′)

. (5.12)

Our aim is to show that the function g(ν) := E[f(Xν)] is strictly monotonically decreas-
ing in ν if

f(a) 6= f(a′) for some a 6= a′ ∈ X . (5.13)

We prove this by showing that if (5.13) holds, then the first derivative of g is negative.
For notational convenience, we write X = {x1, x2, . . . , xM} and we define wi = f(xi).
We can then write

g(ν) = E[f(Xν)] =

∑M
i=1wi · e−νwi∑M
j=1 e

−νwj
=
h(ν)

d(ν)
. (5.14)
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5.5. Problems

The derivative of g is

g′(ν) =
h′(ν)d(ν)− h(ν)d′(ν)

[d(ν)]2
. (5.15)

Since [d(ν)]2 > 0, we need to show that the numerator is negative. We have

h′(ν)d(ν)− h(ν)d′(ν)

= −
[(

M∑
i=1

w2
i e
−νwi

)(
M∑
j=1

e−νwj

)
−
(

M∑
i=1

wie
−νwi

)(
M∑
j=1

wje
−νwj

)]
. (5.16)

For i = 1, . . . ,M , define

ui = wi
√
e−νwi (5.17)

vi =
√
e−νwi . (5.18)

The numerator (5.16) now becomes

h′(ν)d(ν)− h(ν)d′(ν) = −[uuTvvT − (uvT )2] < 0 (5.19)

where the inequality follows by the Cauchy-Schwarz inequality (A.1) and since by as-
sumption (5.13), wi 6= wj for at least one pair of i, j so that u and v are linearly
independent.

5.5. Problems

Problem 5.1. Consider the optimization problem (5.6).

1. What is the maximum (minimum) constellation scaling ∆ that is feasible, i.e., for
which maximum (minimum) value of ∆ can the power constraint E[(∆X)2] ≤ P
be satisfied?

2. Determine the corresponding input distributions.

3. Are these distributions MB distributions (5.9)? If yes, which values does the
parameter ν take?

Problem 5.2. For the ASK constellation X and the power constraint P, suppose PX∗ and
∆∗ are the distribution and the constellation scaling, respectively, that achieve capacity,
i.e., they are a solution of (5.6). Define

PX](a) =
PX∗(a) + PX∗(−a)

2
, a ∈ X . (5.20)

1. Show that PX] is symmetric, i.e., for each a ∈ X , we have PX](a) = PX](−a).
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5. Non-Uniform Discrete Input Distributions for AWGN

2. Show that E[(∆∗ ·X])2] ≤ P.

3. Define PX−(a) = PX∗(−a), a ∈ X . Show that I(X−; ∆∗ · X− + Z) = I(X∗; ∆∗ ·
X∗ + Z).
Hint: The noise pdf pZ is symmetric.

4. Show that I(X]; ∆∗ ·X] + Z) ≥ I(X∗; ∆∗ ·X∗ + Z).
Hint: I(X;Y ) is concave in PX .

5. Conclude that ASK constellations in AWGN have symmetric capacity-achieving
distributions.

Problem 5.3. Consider the finite set X = {x1, x2, . . . , xn}. Let f be a function that
assigns to each xi ∈ X a positive cost f(xi) > 0. Define the MB distribution

PXν (xi) =Aνe
−νf(xi), Aν =

1∑n
i=1 e

−νf(xi)
. (5.21)

1. Let PX be some distribution on X with E[f(X)] = P. Choose ν : E[f(Xν)] = P.
Show that H(X) ≤ H(Xν) with equality if and only if PX = PXν .

2. Let PX be some distribution on X with H(X) = H. Choose ν : H(Xν) = H. Show
that E[f(X)] ≥ E[f(Xν)] with equality if and only if PX = PXν .

Note that (5.9) is an instance of (5.21) for f(xi) = |xi|2.
Problem 5.4. Let X be a discrete random variable with a distribution PX on X . Con-
sider a value H with H(X) < H < log2 |X |. Characterize the solution of the optimization
problem

min
PY

D(PY ‖PX) (5.22)

subject to H(Y ) ≥ H. (5.23)

How does the solution look like when PX is a MB distribution (5.9)?
Hint: This is a convex optimization problem.
Problem 5.5. Let B denote the Gray label of a 2m-ASK constellation. Let the MB
distribution PX♣ induce a distribution PB via X♣ = xB.

1. Show that PB1(0) = PB1(1) = 1
2
.

2. Show that B1 and Bm
2 = B2 · · ·Bm are independent, i.e., show that

PB(bb) = PB1(b)PBm2 (b), ∀b ∈ {0, 1}, b ∈ {0, 1}m−1. (5.24)
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6. Probabilistic Amplitude Shaping

In this chapter, we develop the basic probabilistic amplitude shaping (PAS) architec-
ture for combining optimized input distributions with forward error correction (FEC).
We focus on the transmitter side. In Chapter 8, we analyze the decoding metric em-
ployed at the receiver and in Chapter 9, we discuss the constant composition distribution
matcher (CCDM) for emulating the shaped amplitude source from uniform source bits.
In Chapter 10, we derive error exponents and achievable rates for PAS with CCDM.

6.1. Summary

• The AWGN channel with 2m-ASK constellation and symmetric input distribution
PX , i.e., PX(x) = PX(−x), is considered.

• Probabilistic amplitude shaping (PAS): The input distribution PX can be im-
plemented by a transmitter that concatenates a shaped amplitude source PA ,
A = |X|, with a systematic binary encoder with code rate c ≥ m−1

m
.

• The PAS transmission rate is

RPAS = H(X)− (1− c)m. (6.1)

• The PAS transmission rate is achievable if

H(X)− (1− c)m ≤ I(X;Y ). (6.2)

6.2. Preliminaries

Consider the AWGN channel

Y = ∆X + Z (6.3)

where Z is zero mean Gaussian with variance one and where X is 2m-ASK input. In
Section 5.3, we have seen that optimizing ∆, PX over the family of MB distributions
results in mutual informations that are close to the AWGN capacity, when the constel-
lation size is large enough. For the optimized parameters ∆♣, PX♣ , we want to develop
a transmitter that enables reliable transmission with a rate close to I(X♣;Y ♣). Sup-
pose our transmitter encodes message W to Xn = xn(W ). Suppose further the message
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6. Probabilistic Amplitude Shaping

consists of k = nR uniformly distributed bits. Then, by Theorem 1 (Channel Coding
Converse), if

R >

∑n
i=1 I(Xi;Yi)

n
(6.4)

the error probability Pr(W 6= Ŵ ) is bounded away from zero, for any decoding function
Ŵ = f(Y n). We therefore build a transmitter with

PXi = PX♣ , i = 1, 2, . . . , n. (6.5)

For such a transmitter, the right-hand side of (6.4) is equal to I(X♣;Y ♣), so that
reliable transmission with rates close to I(X♣;Y ♣) is not ruled out by (6.4). We make
the following two observations:

Amplitude-Sign Factorization

We can write X♣ as

X♣ = A · S (6.6)

where A = |X♣| is the amplitude of the input and where S = sign(X♣) is the sign of
the input. By (5.1), the amplitudes take values in

A := {1, 3, . . . , 2m − 1}. (6.7)

We see from (5.9) that the distribution PX♣ is symmetric around zero, i.e., we have

PX♣(x) = PX♣(−x) (6.8)

and therefore, A and S are stochastically independent and S is uniformly distributed,
i.e., we have

PX♣(x) = PA(|x|) · PS(sign(x)), ∀x ∈ X (6.9)

PS(1) = PS(−1) =
1

2
. (6.10)

We call this property of PX♣ amplitude-sign factorization.

Uniform Check Bit Assumption

The second observation is on systematic binary encoding . A systematic generator matrix
of an (nc, kc) binary code has the form

G = [Ikc|P ] (6.11)
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6.3. Encoding Procedure

Figure 6.1.: The black and white pixels of a 180 × 180 picture are represented by 1s
and 0s, respectively, and then encoded by a DVB-S2 rate 1/2 LDPC code.
The resulting check bits are displayed next to the picture. The empirical
distribution of the original picture is PD̄(1) = 1 − PD̄(0) = 0.1082 and the
empirical distribution of the check bits is PR̄(1) = 1− PR̄(0) = 0.4970.

where Ikc is the kc× kc identity matrix and P is a kc× (nc− kc) matrix. P is the parity
forming part of G. The generator matrix G maps kc data bits Dkc to a length nc code
word via

DkcG = (Dkc |Rnc−kc) (6.12)

where Rnc−kc are redundant bits that are modulo-two sums of data bits. Suppose the
data bits have some distribution PDkc . Since the encoding is systematic, this distribution
is preserved at the output of the encoder. What is the distribution of the redundancy
bits? To address this question, consider two independent data bits D1 and D2. The
modulo-two sum R = D1 ⊕ D2 is then more uniformly distributed than the individual
summands D1 and D2, see Problem 6.1. This suggests that if the redundancy bits are
the modulo-two sum of a large enough number of data bits, then their distribution is
close to uniform. An example of this phenomenon is shown in Figure 6.1. We therefore
follow [16, Section VI],[17, Chapter 5],[18, Section 7.1] and assume in the following that
the redundancy bits are uniformly distributed and we call this assumption the uniform
check bit assumption. Note that in Chapter 10, we derive with mathematical rigor
error exponents and achievable rates for PAS without resorting to the uniform check bit
assumption. The achievable rates in Chapter 10 coincide with the achievable rates that
we state in the present chapter.

6.3. Encoding Procedure

Consider block transmission with n symbols from a 2m-ASK constellation. Since we use
binary error correcting codes, we label each of the 2m−1 amplitudes by a binary string
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6. Probabilistic Amplitude Shaping

PA A1. . .An × X1 . . . Xn ×

b(·) P b−1(·) ∆b(A1). . .b(An) b(S1). . .b(Sn)
S1. . .Sn

Figure 6.2.: PAS. The ASK amplitudes Ai take values in A = {1, 3, . . . , 2m − 1}. The
amplitudes Ai are represented by their binary labels b(Ai). Redundancy
bits b(Si) result from multiplying the binary string b(A1)b(A2) · · · b(An) by
the parity forming part P of a systematic generator matrix [Ikc|P ]. The
redundancy bits b(Si) are transformed into signs Si and multiplied with
the amplitudes Ai. The resulting signal points Xi = AiSi take values in
X = {±1,±3, . . . ,±(2m − 1)}. The signal points Xi are scaled by ∆ and
∆Xi is transmitted over the channel.

of length m− 1 and we label each of the signs ±1 by a bit, i.e., we use

A 7→ b(A) ∈ {0, 1}m−1 (6.13)

S 7→ b(S) ∈ {0, 1}. (6.14)

For the sign, we use b(−1) = 0 and b(1) = 1. The choice of b(A) influences the
rates that can be achieved by bit-metric decoding (BMD), i.e., the combination of a
binary demapper with a binary decoder at the receiver. We discuss this in detail in
Section 8.1.2. We use a rate kc/nc = (m− 1)/m binary code with systematic generator
matrix G = [Ikc |P ]. For block transmission with n channel uses , the block length of
the code is nc = nm and the dimension of the code is kc = n(m − 1). The encoding
procedure is displayed in Figure 6.2. It works as follows.

1. A discrete memoryless source (DMS) PA outputs amplitudes A1, A2, . . . , An that
are iid according to PA. We explain in Chapter 9 how the DMS PA can be emulated
from binary data by distribution matching.

2. Each amplitude Ai is represented by its label b(Ai).

3. The resulting length (m−1)n = kc binary string is multiplied by the parity forming
part P of G to generate nc − kc = n sign labels b(S1), b(S2), . . . , b(Sn).

4. Each sign label b(Si) is transformed into the corresponding sign Si.

5. The signal Xi = Ai · Si is scaled by ∆ and transmitted.

We call this procedure probabilistic amplitude shaping (PAS). Since the signs Sn are
a deterministic function of the amplitudes An, the input symbols X1, X2, . . . , Xn are
correlated. Under the uniform check bit assumption, the marginal distributions are

PXi(xi) = PA(|xi|)PSi(sign(xi)) (6.15)

= PA(|xi|)
1

2
(6.16)

= PX♣(xi) (6.17)
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Figure 6.3.: The mutual information curves (solid) and the transmission rate curves
(dashed) for ASK. The optimal operating points for rate (m − 1)/m codes
are indicated by dots.

that is, if the uniform check bit assumption holds, then PAS has the desired property
(6.5).

6.4. Optimal Operating Points

We study the rates at which reliable transmission is possible with our scheme. By (6.4),
reliable communication at rate R is achievable only if

R <

∑n
i=1 I(Xi;Yi)

n
= I(X;Y ) = I(AS;Y ). (6.18)

Since An represents our data, our transmission rate is

R =
H(An)

n
= H(A)

[
bits

channel use

]
(6.19)

and condition (6.18) becomes

H(A) < I(AS;Y ). (6.20)

In Figure 6.3, both the mutual information I(AS;Y ) (solid lines) and transmission rate
H(A) (dashed lines) are displayed for 4, 8, 16, 32, and 64-ASK. For high enough SNR, the
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6. Probabilistic Amplitude Shaping

PA A1. . .An × X1 . . . Xn ×

b(·) P b−1(·)

PU b(S1). . .b(Sγn)

∆b(A1). . .b(An) b(Sγn+1). . .b(Sn)
S1. . .Sn

Figure 6.4.: Extension of PAS to code rates higher than (m − 1)/m. The fraction γ of
the signs is used for data, which is modelled as the output of a Bernoulli-1/2
DMS PU .

mutual information saturates at m bits and the transmission rate saturates at m−1 bits.
Optimal error correction for block length n→∞ would operate where the transmission
rate curve crosses the mutual information curve. These crossing points are indicated by
dots in Figure 6.3. Since the code rate is c = (m − 1)/m, the transmission rate curve
can be written as

RPAS = H(A) = H(X)− 1 = H(X)− (1− c)m
[

bits

channel use

]
. (6.21)

6.5. PAS for Higher Code Rates

We observe in Figure 6.3 that the ASK mutual information curves stay close to the
capacity C(P/σ2) over a certain range of rates above the optimal operating points. We
therefore extend our PAS scheme to enable the use of code rates higher than (m− 1)/m
on 2m-ASK constellations. We achieve this by using some of the signs Si for uniformly
distributed data bits. We illustrate this extension of the PAS scheme in Figure 6.4. Let
γ denote the fraction of signs used for data bits. We interpret γn uniformly distributed
data bits as sign labels b(S1) · · · b(Sγn). These γn bits and the (m − 1)n bits from the
amplitude labels are encoded by the parity forming part of a systematic rate c generator
matrix, which generates the remaining (1 − γ)n sign labels. The code rate can be
expressed in terms of m and γ as

c =
m− 1 + γ

m
. (6.22)

For a given code rate c, the fraction γ is given by

γ = 1− (1− c)m. (6.23)
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Figure 6.5.: Optimal operating points of 8-ASK for PAS (c = 2/3) and extended PAS
(c = 3/4).

Since a fraction γ of the signs now carries information, the transmission rate of the
extended PAS scheme is given by

RPAS =
H(An) + H(Sγn)

n
= H(A) + γ

= H(X)− 1 + 1− (1− c)m

= H(X)− (1− c)m
[

bits

channel use

]
. (6.24)

The optimal operating point is then given by the crossing of the rate curve H(A) + γ
and the mutual information curve. In Figure 6.5, we display for 8-ASK the optimal
operating points for c = 2/3 and c = 3/4.

6.6. PAS Example

Example 6.1 (PAS). Suppose we use 4-ASK with the constellation X = {−3,−1, 1, 3}.
We consider block transmission with a block length of n = 4 channel uses. The de-
sired input distribution is

PX(−1) = PX(1) =
3

8
, PX(−3) = PX(3) =

1

8
. (6.25)
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6. Probabilistic Amplitude Shaping

The possible amplitudes are 1 and 3, which should occur with probabilities

PA(1) =
3

4
, PA(3) =

1

4
. (6.26)

For the amplitudes and the sign, we respectively use the labelings

b(1) = 1, b(3) = 0 (6.27)

b(−1) = 0, b(1) = 1. (6.28)

The labeling of the signal points in X is label(x) = b[sign(x)]b(|x|), e.g., label(−3) =
00 and label(1) = 11. To emulate an amplitude DMS, we now introduce the idea of a
distribution matcher (DM): Our data are two independent and uniformly distributed
bits D1D2. We map the data bits to sequences of amplitudes by the mapping

00 7→ (3, 1, 1, 1) =: a(1) (6.29)

01 7→ (1, 3, 1, 1) =: a(2) (6.30)

10 7→ (1, 1, 3, 1) =: a(3) (6.31)

11 7→ (1, 1, 1, 3) =: a(4). (6.32)

This mapping is an instance of the constant composition distribution matcher (CCDM),
which we discuss in detail in Chapter 9. By this mapping, each amplitude Ai,
i = 1, 2, 3, 4 indeed has the desired amplitude distribution PA, i.e.,

PAi(1) = 1− PAi(3) =
3

4
. (6.33)

The binary representation of the amplitudes are by (6.27)

b(1) = (0, 1, 1, 1) (6.34)

b(2) = (1, 0, 1, 1) (6.35)

b(3) = (1, 1, 0, 1) (6.36)

b(4) = (1, 1, 1, 0). (6.37)

We use the binary linear block code with systematic generator matrix

G =


1 0 0 0 1 0 0 1
0 1 0 0 0 1 1 0
0 0 1 0 0 1 0 1
0 0 0 1 1 0 1 0

 = [I|P ]. (6.38)
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The resulting redundancy vectors are

r(1) = b(1)P = (1, 0, 0, 1) (6.39)

r(2) = b(2)P = (0, 1, 1, 0) (6.40)

r(3) = b(3)P = (0, 1, 0, 1) (6.41)

r(4) = b(4)P = (1, 0, 1, 0). (6.42)

We apply the inverse labeling function b−1 to the redundancy vectors to obtain the
sign vectors

s(1) = (1,−1,−1, 1) (6.43)

s(2) = (−1, 1, 1,−1) (6.44)

s(3) = (−1, 1,−1, 1) (6.45)

s(4) = (1,−1, 1,−1). (6.46)

The resulting sign distribution is the desired uniform distribution

PSi(1) = PSi(0) =
1

2
, i = 1, 2, 3, 4. (6.47)

By entrywise multiplying the amplitude vectors and the sign vectors, we finally
obtain the signals

x(1) = (3,−1,−1, 1) (6.48)

x(2) = (−1, 3, 1,−1) (6.49)

x(3) = (−1, 1,−3, 1) (6.50)

x(4) = (1,−1, 1,−3). (6.51)

The marginal distributions of the transmitted signal points are

−3 −1 1 3

PX1

−3 −1 1 3

PX2

−3 −1 1 3

PX3

−3 −1 1 3

PX4

As we can see, the distributions deviate from the target distribution (6.25). Note:
By averaging over the code symbols, we get
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6. Probabilistic Amplitude Shaping

−3 −1 1 3

PX̄

which is actually equal to the target distribution (6.25).

6.7. Problems

Problem 6.1. Let D1 and D2 be two independent binary random variables with distri-
butions P and Q, respectively, and define R = D1 ⊕D2, where ⊕ denotes modulo two
addition. Without loss of generality, assume that

P (0) ≤ P (1), Q(0) ≤ Q(1). (6.52)

Show that PR is more uniform than P and Q, i.e., show that

min{P (1), Q(1)} ≥ PR(0) ≥ max{P (0), Q(0)}. (6.53)

Problem 6.2. Let Xn = X1 . . . Xn be independent and uniformly distributed binary
random variables. Let Z be a binary random variable independent of Xn. Define Y n by
Yi ⊕ Z, i = 1, 2, . . . , n, where ⊕ denotes modulo two addition. Calculate I(Xn;Y n).
Problem 6.3. The discrete Fourier transform (DFT) of vectors in the two-dimensional
vector space R×R is given by

p = (p1, p2)� p̃ := (p1 + p2, p1 − p2) (6.54)

= (p1, p2)

(
1 1
1 −1

)
. (6.55)

The circular convolution of two vectors in R2 is

p ? q = (p1q1 + p2q2, p2q1 + p1q2). (6.56)

1. Calculate the DFT of the uniform distribution PU = [PU(0), PU(1)] = (1/2, 1/2).

2. Show the correspondence

p ? q� p̃ ◦ q̃ := (p̃1q̃1, p̃2q̃2). (6.57)

3. Let B1 and B2 be two independent binary random variables with PB1 = PB2 = PB.
Define R = B1 ⊕B2. Show that PR = PB ? PB and calculate the DFT of PR.

52



6.7. Problems

4. Consider now R = B1⊕B2⊕· · ·⊕Bd with the Bi iid with PBi = PB and PB(0) 6= 0

and PB(1) 6= 0. Calculate the DFT P̃R of PR and show that P̃R
d→∞→ P̃U . Conclude

that R is approximately uniformly distributed for large enough d.

Problem 6.4.

4-ASK constellation {−3,−1, 1, 3}
number of channel uses n = 20
data sign bit fraction γ = 1

2

DM A1. . .An × X1 . . . Xn

data bits
1 7→ 1
3 7→ 0

P
0 → −1
1 → 1

/

/

γn

/
n

amplitude bits

/
(1− γ)n
parity bits

kdm

Figure 6.6.: PAS transmitter.

In the amplitude sequences at the distribution matcher (DM) output, the amplitude 1
appears 15 times and the amplitude 3 appears 5 times.

1. How many bits kdm can the DM encode?

Assume from now on kdm = 12 bits.

2. What is the transmission power P of the system?

3. The symbols Xi, i = 1, 2, . . . , n are transmitted over an AWGN channel and the
output observed at the receiver is

Yi = Xi + Zi, i = 1, 2, . . . , 20

where the Zi are independent of the input and independent and identically dis-
tributed according to a zero mean Gaussian density with variance σ2. For which
value of σ2 is the signal-to-noise-ratio (SNR) equal to 6 dB?

4. Calculate the transmission rate of the system and compare it to the AWGN ca-
pacity at 6 dB.

5. You have two binary forward error correction (FEC) codes, one with rate 2/3 and
one with rate 3/4. Which of of the two codes is used in the system and what is
the dimension of the matrix P in Figure 6.6?

6. The matcher is replaced by the mapping 0 7→ 3, 1 7→ 1. To operate at the same
transmission rate and the same transmission power as the former system, the FEC
code rate is changed to c and the symbols Xi are scaled by ∆ prior to transmission.
Calculate c and ∆. You can assume that the data bits are uniformly distributed.
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7. Achievable Rates

In this chapter, we take an information-theoretic perspective and use random coding
arguments following Gallager’s error exponent approach [3, Chapter 5] to derive achiev-
able rates for general channels and decoding metrics. The results derived in this chapter
form the foundation for several other chapters.

• In Chapter 8, we instantiate the general metric of this chapter for a number of
specific decoding metrics, including bit-metrics, interleaving, and hard-decision
decoding.

• In Chapter 10, we derive error exponents and achievable rates for PAS, a practical
transceiver architecture developed in Chapter 6.

• In Chapter 11, we discuss how to estimate achievable rates for channels that po-
tentially have memory.

We consider a layered architecture consisting of a FEC layer, where the receiver detects
the transmitted code word, and a shaping layer, whose task is to encode into code words
that have a desired distribution.

7.1. FEC Layer

In Figure 7.1, we display the random coding experiment for analyzing the FEC layer.
The details are as follows.

• The channel is discrete-time with input alphabet X and output alphabet Y . We
derive our results assuming a continuous-valued output. Our results also apply for
discrete output alphabets.

• Random coding: For indices w = 1, 2, . . . , |C|, we generate code words Cn(w) with
the n|C| entries independent and uniformly distributed on X . The code is

C = {Cn(1), Cn(2), . . . , Cn(|C|)}. (7.1)

• The code rate is Rc = log2(|C|)
n

and equivalently, we have |C| = 2nRc code words.

• We consider a non-negative decoding metric q on X × Y and we define the mem-
oryless metric

qn(xn, yn) :=
n∏
i=1

q(xi, yi), xn ∈ X n, yn ∈ Yn. (7.2)
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index w0 ∈
{1, . . . , 2nRc}

FEC
encoder

Cn(w0) = xn

Channel

decoded
index Ŵ

FEC
decoder

yn

FEC layer

random code C

Figure 7.1.: The random coding experiment for bounding the decoding error probability
of the FEC layer.

For the channel output yn, we let the receiver decode with the rule

Ŵ = argmax
w∈{1,...,2nRc}

n∏
i=1

q [Ci(w), yi] . (7.3)

• We consider the decoding error probability

Pe = Pr
[
Ŵ 6= w0

∣∣∣Cn(w0) = xn, Y n = yn
]

(7.4)

where w0 is the index of the transmitted code word, Cn(w0) = xn is the transmitted
code word, yn is the channel output sequence, and Ŵ is the decoded index at the
receiver. Note that the code words Cn(w), w 6= w0 against which the decoder
attempts to decode are random and the transmitted code word Cn(w0) = xn and
the channel output yn are deterministic.

7.1.1. Achievable Code Rate

Theorem 4. Suppose code word Cn(w0) = xn is transmitted and let yn be a channel
output sequence. With high probability for large n, the decoder can recover the index w0

from the sequence yn if

Rc < T̂c(x
n, yn, q) =

1

n

n∑
i=1

log2

q(xi, yi)∑
a∈X

1
|X |q(a, yi)

(7.5)

= log2 |X | −
1

n

n∑
i=1

[
− log2

q(xi, yi)∑
a∈X q(a, yi)

]
︸ ︷︷ ︸

uncertainty

(7.6)
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7.1. FEC Layer

• The factor 1/|X | in (7.5) reflects that the code word entries are generated uniformly
at random in the random coding experiment.

• In (7.6), the achievable code rate is split into log2 |X |, which corresponds to the rate
that can be achieved in the absence of noise, and the uncertainty, which quantifies
how much we need to back off in terms of code rate because of the presence of
noise.

Example 7.1. Consider finite input and output alphabets X and Y , respectively,
and let xn ∈ X n, yn ∈ Yn be two arbitrary sequences. Suppose the decoder knows
the empirical input distribution Pxn (see Appendix C.1) given by

Pxn(a) =
|{i : xi = a}|

n
. (7.7)

It measures the output distribution Pyn and uses as metric

q(a, b) = Pxn(a)Pyn(b), a ∈ X , b ∈ Y . (7.8)

For this metric, the achievable code rate is

T̂c(x
n, yn, PxnPyn) = D(Pxn‖PU) = H(PU)−H(Pxn) (7.9)

where PU is the uniform distribution on X . By the information inequality (C.21),
the achievable code rate is positive for non-uniform input xn, and is zero for uniform
input. Suppose next the decoder knows the empirical channel law Pyn|xn and uses
the metric

q(a, b) = Pxn(a)Pyn|xn(b|a), a ∈ X , b ∈ Y . (7.10)

The achievable code rate now becomes

T̂c(x
n, yn, PxnPyn|xn) = H(PU)−H(Pxn|yn|Pyn). (7.11)

Note that since conditioning does not increase entropy (C.15), we have

T̂c(x
n, yn, PxnPyn) ≤ T̂c(x

n, yn, PxnPyn|xn). (7.12)

Example 7.2. Consider an AWGN channel with BPSK, i.e., the input alphabet is
X = {−1, 1}. Let xn be some arbitrary BPSK sequence and let

yn = xn + zn (7.13)

where zn is a real-valued noise sample sequence. The decoder uses the decoding
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metric

q(a, b) = PX(a)eab, a ∈ {−1, 1}, b ∈ R. (7.14)

By Problem 7.1, the achievable code rate is

T̂c(x
n, yn, q) = H(PU)− 1

n

n∑
i=1

[
− log2 PX|Y (xi|yi)

]
(7.15)

where XY are random variables distributed according to

PX(a)pY |X(b|a) = PX(a)pZ(b− a), a ∈ {−1, 1}, y ∈ R (7.16)

and where pZ is a zero mean Gaussian density with variance σ2 = 1.

Example 7.3. Suppose for a channel measurement xn, yn, we want to estimate the
achievable code rate of a specific binary low-density parity-check (LDPC) code with a
soft-decision decoder. Assume the channel input alphabet is binary, i.e., X = {0, 1}.
For each channel use i = 1, 2, . . . , n, we calculate the L-value

Li = log
q(yi, 0)

q(yi, 1)
. (7.17)

We discuss decoding metrics in Chapter 8 and L-values in Problem 8.1. For now,
simply note that if Li > 0, the decoding metric prefers 0 over 1 and if Li < 0, then
it prefers 1 over 0. The metric of a specific binary code word bn is

n∑
i=1

Li(−1)bi (7.18)

and the decoder looks for the code word bn that has the highest metric. If the
transmitted sequence xn was a code word, then we can pass Ln to the decoder and
if the decoded code word is equal to xn, then the code rate of the LDPC code is
achievable for the measurement xn, yn.

Suppose now that the transmitted sequence xn was not a code word. This sit-
uation occurs in particular when we want to determine achievable code rates for a
given measurement by trying out different codes of different rates. We can use the
following trick: for a code word bn and the transmitted sequence xn, we calculate
the scrambling sequence

sn = (x1 ⊕ b1) · · · (xn ⊕ bn). (7.19)

Note that this implies that adding the scrambling sequence to the transmitted se-
quence results in a code word, because xi ⊕ si = bi. We now transform the soft
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7.1. FEC Layer

information Ln by

L̃i = Li(−1)si , i = 1, . . . , n (7.20)

and we pass L̃n to the decoder. We then add sn to the decoder output b̂n and
we check if the result is equal to the transmitted sequence xn. This procedure can
also be used when the channel input alphabet is not binary, for instance by using
bit-metric decoding (BMD), see Section 8.1.2.

Proof of Theorem 4. We consider the setup in Figure 7.1, i.e., we condition on the event
that index w0 was encoded to Cn(w0) = xn and that sequence yn was output by the
channel. For notational convenience, we assume without loss of generality that w0 = 1.
We have the implications

Ŵ 6= 1⇒ Ŵ = w′ 6= 1 (7.21)

⇒ L(w′) :=
qn(Cn(w′), yn)

qn(xn, yn)
≥ 1 (7.22)

⇒
|C|∑
w=2

L(w) ≥ 1. (7.23)

If event A implies event B, then Pr(A) ≤ Pr(B). Therefore, we have

Pr(Ŵ 6= 1|Cn(1) = xn, Y n = yn) ≤ Pr

 |C|∑
w=2

L(w) ≥ 1

∣∣∣∣∣∣Cn(1) = xn, Y n = yn

 (7.24)

≤ E

 |C|∑
w=2

L(w)

∣∣∣∣∣∣Cn(1) = xn, Y n = yn

 (7.25)

= qn(xn, yn)−1 E

 |C|∑
w=2

qn(Cn(w), yn)

 (7.26)

= (|C| − 1)qn(xn, yn)−1 E [qn(Cn, yn)] (7.27)

≤ |C|qn(xn, yn)−1 E [qn(Cn, yn)] (7.28)

= |C| 1∏n
i=1 q(xi, yi)

n∏
i=1

E [q(C, yi)] (7.29)

= |C| 1∏n
i=1 q(xi, yi)

n∏
i=1

∑
a∈X
|X |−1q(a, yi) (7.30)

= |C|
n∏
i=1

∑
a∈X q(a, yi)

q(xi, yi)|X |
(7.31)

where
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• Inequality in (7.25) follows by Markov’s inequality (B.6).

• Equality in (7.26) follows because for w 6= 1, the code word Cn(w) and the
transmitted code word Cn(1) were generated independently so that Cn(w) and
[Cn(1), Y n] are independent.

• Equality in (7.27) holds because in our random coding experiment, for each index
w, we generated the code word entries C1(w), C2(w), . . . , Cn(w) iid.

• In (7.29), we used (7.2), i.e., that qn defines a memoryless metric.

We can now write this as

Pr(Ŵ 6= 1|Cn(1) = xn, Y n = yn) ≤ 2−n[T̂c(xn,yn,q)−Rc] (7.32)

where T̂c(x
n, yn, q) =

1

n

n∑
i=1

log2

q(xi, yi)∑
a∈X

1
|X |q(a, yi)

(7.33)

For large n, the error probability upper bound is vanishingly small if

Rc < T̂c(x
n, yn, q). (7.34)

Thus, T̂c(x
n, yn, q) is an achievable code rate, i.e., for a random code C, if (7.34) holds,

then sequence xn can be decoded reliably from yn with high probability.

7.1.2. Memoryless Processes

We take a little detour and review memoryless random processes and their basic prop-
erties, which we need in the following sections of this chapter. Consider the following
statement:

If I toss a coin, the probability that I get “heads” is 1/2.

What does this mean? If I toss a coin once, I get either “heads” or “tails” but nothing
in-between. To make this statement meaningful, we need to throw the coin many times.
We can then count the total number of coin tosses and the number of times we got
“heads”. Suppose we tossed the coin n times and let nheads be the number of times the
outcome was “heads”. Our probabilistic model Pr(“heads”) = 1

2
is reasonable if the

observed relative frequency nheads/n is close to 1/2, i.e., if

nheads

n
≈ Pr(“heads”) =

1

2
. (7.35)

Weak Law of Large Numbers

The weak law of large numbers (WLLN) makes the qualitative statement (7.35) precise.
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Theorem 5 (WLLN). For each integer n, let Sn = X1 + · · ·+Xn where X1, X2, . . . are
iid random variables with distribution PX satisfying E(|X|2) <∞. Then for any ε > 0

lim
n→∞

Pr

{∣∣∣Sn
n
− E(X)

∣∣∣ > ε

}
= 0. (7.36)

Proof. See, e.g., [19, Section 1.7.4].

When (7.36) holds, we say that Sn/n converges to E(X) in probability and we write

Sn
n

p→ E(X). (7.37)

The statements (7.37) and (7.36) are equivalent. The phenomenon of convergence in
probability is also called measure concentration.

Example 7.4 (Relative frequencies). Let X1, X2, . . . be coin tosses that are iid
according to PX(h) = PX(t) = 1/2. Define Zi = 1(Xi = h). Since the Xi are iid
and Zi is a deterministic function of Xi, the random variables Z1, Z2, . . . are also iid
and by the WLLN, we have∑n

i=1 Zi
n

p→ E(Z) = PX(h) · 1 + PX(t) · 0 = PX(h). (7.38)

Example 7.5 (Entropy). Let X1, X2, . . . be iid according to some distribution PX .
Define Zi = − log2 PX(Xi). By the WLLN, we have∑n

i=1 Zi
n

p→ E(Z) = E[− log2 PX(X)] = H(X) (7.39)

that is,
∑n

i=1 Zi/n converges to the entropy H(X) in probability.

Example 7.6 (No Measure Concentration). Consider a coin with PY1(h) = PY1(t) =
1/2 and Yi = Y1, i = 1, 2, 3, . . . . The two possible realizations are the sequences
hhh · · · and ttt · · · . At every time instance i, the marginal distribution is

PYi(h) = PY1(h) =
1

2
. (7.40)

As function of interest, we pick 1(Y = h) and we define Zi = 1(Yi = h). We have
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E(Z) = 1/2 and for any ε < 1/2, we have

Pr

{∣∣∣∣∑n
i=1 Zi
n

− E(Z)

∣∣∣∣ > ε

}
= 1 (7.41)

independent of n. This means that no measure concentration in E(Z) is happening.

7.1.3. Memoryless Channels

Theorem 6. For a memoryless channel with channel law

pY n|Xn(bn|an) =
n∏
i=1

pY |X(bi|ai), bn ∈ Yn, an ∈ X n (7.42)

the decoder can recover xn from the random channel output if xn is approximately of
type PX and if

Rc < Tc = E

[
log2

q(X, Y )∑
a∈X

1
|X |q(a, Y )

]
(7.43)

= log2 |X | − E
[
− log2

q(X, Y )∑
a∈X q(a, Y )

]
︸ ︷︷ ︸

uncertainty

(7.44)

where the expectation is taken according to XY ∼ PXpY |X .

Proof. We continue to assume input sequence xn was transmitted, but we replace the
specific channel output measurement yn by the random output Y n, distributed according
to pnY |X(·|xn). The achievable code rate (7.33) evaluated in Y n is

T̂c(x
n, Y n, q) =

1

n

n∑
i=1

log2

q(xi, Yi)∑
c∈X

1
|X |q(c, Yi)

. (7.45)

Since Y n is random, T̂c(x
n, Y n, q) is also random. First, we rewrite (7.45) by sorting the

summands by the input symbols, i.e.,

1

n

n∑
i=1

log2

q(xi, Yi)∑
c∈X

1
|X |q(c, Yi)

=
∑
a∈X

N(a|xn)

n

[
1

N(a|xn)

∑
i : xi=a

log2

q(a, Yi)∑
c∈X

1
|X |q(c, Yi)

]
(7.46)

where N(a|xn) is the number of occurrences of a in xn, see Appendix C.1. Note that
identity (7.46) holds also when the channel has memory. For memoryless channels, we
make the following two observations:
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• Consider the inner sums in (7.46). For memoryless channels, the outputs {Yi : xi =
a} are iid according to pY |X(·|a). Therefore, by the WLLN (7.36), we have

1

N(a|xn)

∑
i : xi=a

log2

q(a, Yi)∑
c∈X

1
|X |q(c, Yi)

p→ E

[
log2

q(a, Y )∑
c∈X

1
|X |q(c, Y )

∣∣∣∣∣X = a

]
(7.47)

where
p→ denotes convergence in probability (7.37). That is, by making n and

thereby N(a|xn) large, each inner sum converges in probability to a deterministic
value. Note that the expected value on the right-hand side of (7.47) is no longer a
function of the output sequence Y n and is determined by the channel law pY |X(·|a)
according to which the expectation is calculated.

• Suppose now for some distribution PX and ε ≥ 0, the sequence xn is in the typical
set T nε (PX), so that by Appendix C.1, we have

(1− ε)PX(a) ≤ N(a|xn)

n
≤ (1 + ε)PX(a), a ∈ X . (7.48)

We now have

1

n

n∑
i=1

log2

q(xi, Yi)∑
c∈X

1
|X |q(c, Yi)

p→
∑
a∈X

N(a|xn)

n
E

[
log2

q(a, Y )∑
c∈X

1
|X |q(c, Y )

∣∣∣∣∣X = a

]
(7.49)

≥ E

[
log2

q(X, Y )∑
c∈X

1
|X |q(c, Y )

]
− ε
∑
a∈X

PX(a)

∣∣∣∣∣E
[

log2

q(a, Y )∑
c∈X

1
|X |q(c, Y )

∣∣∣∣∣X = a

]∣∣∣∣∣
(7.50)

where the expectation in (7.50) is calculated according to PX and the channel law
pY |X . In other words, (7.50) is an achievable code rate for all code words xn that
are in T nε (PX).

Remark 4. In (7.47), we use N(a|xn) samples to estimate an expectation conditioned
on the input X = a. We do so for each a ∈ X . We then sum up the conditional
expectations, weighting the summands by the corresponding fraction N(a|xn)/n. In
principle, we could also use a different strategy, e.g., we could use the same number
n/|X | of samples for estimating each conditional expectation, and then calculate the
sum with the weighting factors N(a|xn)/n. In Problem 7.2, we show that under certain
conditions, using the number of samples N(a|xn) that corresponds to the weighting
factor is reasonable, in the sense that it minimizes the variance of the weighted sum.
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index Ŵ
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shaping layer FEC layer
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Figure 7.2.: The random coding experiment with the shaping layer.

7.2. Shaping Layer

We now add a shaping layer whose task is to encode message bits into code words with
a desired distribution. See Figure 7.2 for an illustration.

• Encoding: We set Rtx + R′ = Rc and double index the code words by Cn(u, v),
u = 1, 2, . . . , 2nRtx , v = 1, 2, . . . , 2nR

′
. We encode message u ∈ {1, . . . , 2nRtx} by

looking for a v, so that Cn(u, v) ∈ T nε (PX), which is a set of typical sequences, see
Appendix C.1. If we can find such v, we transmit the corresponding code word. If
not, we choose some arbitrary v and transmit the corresponding code word.

• The rate is Rtx, since the encoder can encode 2nRtx different messages.

The FEC layer works as before, in particular:

• Decoding: Recall that the receiver decodes with the rule

Ŵ = argmax
w∈{1,...,2nRc}

n∏
i=1

q(Ci(w), yi). (7.51)

Note that the decoder evaluates the metric on all code words in C, which includes
code words that will never be transmitted because they are not in the shaping set
T nε (PX).

• Decoding error: Note that Ŵ = w0 implies Û = u0, where u0 is the encoded
message and Û is the decoded message. In particular, we have

Pr(Û 6= u0|Cn(w0) = xn, Y n = yn) ≤ Pr(Ŵ 6= w0|Cn(w0) = xn, Y n = yn). (7.52)

Remark 5. The classical transceiver setup analyzed in, e.g., [3, Chapter 5 & 7],[20],[21],
is as follows:
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7.2. Shaping Layer

• Random coding: For the code C̃ = {C̃n(1), . . . , C̃n(2nR̃c)}, the n · 2nR̃c code word
entries are generated independently according to the distribution PX .

• Encoding: Message u is mapped to code word C̃n(u).

• The decoder uses the decoding rule

û = argmax
u∈{1,2,...,2nR̃c}

n∏
i=1

q(C̃i(u), yi). (7.53)

Note that here, the code word index is equal to the message, i.e., w = u, and conse-
quently, the transmission rate is equal to the code rate, i.e., Rtx = R̃c, while for the
layered transceiver, we have Rtx < Rc for non-uniform PX .

Remark 6. In case the input distribution PX is uniform, the layered transceiver is equiv-
alent to the classical transceiver.

7.2.1. Achievable Encoding Rate

Lemma 1. Encoding in the shaping layer is successful with high probability for large n
if

Rtx < [Rc − D(PX‖PU)]+. (7.54)

Proof. See Section 7.3.

If the right-hand side of (7.54) is positive, then out of the 2nRc code words, approxi-
mately 2n[Rc−D(PX‖PU )] have approximately the distribution PX and may be selected by
the encoder for transmission. If the code rate is less than the informational divergence,
then with high probability, the code does not contain any code word with approximately
the distribution PX . In this case, encoding is impossible, which corresponds to the en-
coding rate zero. The plus operator [·]+ = max{0, ·} ensures that this is reflected by the
expression on the right-hand side of (7.54).

7.2.2. Achievable Rate

By replacing the code rate Rc in the encoding rate [Rc−D(PX‖PU)]+ by the achievable
code rate Tc, we arrive at an achievable rate.
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Theorem 7. An achievable rate is

R = [Tc − D(PX‖PU)]+ =

[
E

[
log2

q(X, Y )∑
a∈X

1
|X |q(a, Y )

]
− D(PX‖PU)

]
(7.55)

=

[
E

[
log2

q(X, Y ) 1
PX(X)∑

a∈X q(a, Y )

]]+

(7.56)

=

H(X)− E
[
− log2

q(X, Y )∑
a∈X q(a, Y )

]
︸ ︷︷ ︸

uncertainty


+

. (7.57)

The three right-hand sides provide three different perspectives on the achievable rate.

• Divergence perspective: The term in (7.55) emphasizes that the random code was
generated according to a uniform distribution and that of the 2nTc code words,
only approximately 2nTc/2nD(PX‖PU ) code words are actually used for transmis-
sion, because the other code words very likely do not have distributions that are
approximately PX .

• Output perspective: In (7.56), q(a, ·)/PX(a) has the role of a channel likelihood
given input X = a assumed by the receiver, and correspondingly,

∑
a∈X q(a, ·)

plays the role of a channel output statistics assumed by the receiver.

• Uncertainty perspective: In (7.57), q(·, b)/∑a∈X q(a, b) defines for each realization
b of Y a distribution on X and plays the role of a posterior probability distribution
that the receiver assumes about the input, given its output observation. The
expectation corresponds to the uncertainty that the receiver has about the input,
given the output.

Example 7.7 (Example 7.1 continued). For the metric

q(a, b) = Pxn(a)Pyn(b), a ∈ X , b ∈ Y . (7.58)

we calculated the achievable code rate

T̂c(x
n, yn, PxnPyn) = D(Pxn‖PU). (7.59)

By Theorem 7, this translates into the achievable rate

Rtx =
[
T̂c(x

n, yn, PxnPyn)− D(Pxn‖PU)
]+

= 0 (7.60)
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which makes sense, since the metric (7.58) treats channel input and output as inde-
pendent. For the metric

q(a, b) = Pxn(a)Pyn|xn(b|a), a ∈ X , b ∈ Y (7.61)

we calculated the achievable code rate

T̂c(x
n, yn, PxnPyn|xn) = H(PU)−H(Pxn|yn|Pyn) (7.62)

which by Theorem 7 translates into the achievable rate

Rtx =
[
T̂c(x

n, yn, PxnPyn|xn)− D(Pxn‖PU)
]+

(7.63)

= H(Pxn)−H(Pxn|yn|Pyn) (7.64)

= I(Pxn , Pxn|yn) (7.65)

where we dropped the [·]+ operator because mutual information is non-negative (C.37).

7.3. Proof of Lemma 1

To analyze the probability of successful encoding, we need a basic result on typical
sequences (see also Appendix C.1). Define

µX := min
a∈suppPX

PX(a). (7.66)

We need the following property of typical sequences.

Lemma 2 (Typicality, [22, Theorem 1.1],[23, Lemma 19]). Suppose 0 < ε < µX . We
have

(1− δε(n, PX))2n(1−ε)H(X) ≤ |T nε (PX)| (7.67)

where δε(PX , n) is such that δε(PX , n)
n→∞−−−→ 0 exponentially fast in n.

Lemma 3 (Mismatched Typicality). Suppose ε > 0, Xn is emitted by the discrete
memoryless source PX and suppPX̃ ⊆ suppPX . We have

(1− δε(PX̃ , n))2−n[D(PX̃‖PX)−ε log2(µX̃µX)] ≤ Pr[Xn ∈ T nε (PX̃)]. (7.68)

Proof. For xn ∈ T nε (PX̃), we have

P n
X(xn) =

∏
a∈suppPX̃

PX(a)N(a|xn)

≥
∏

a∈suppPX̃

PX(a)n(1+ε)PX̃(a)

= 2
∑
a∈suppP

X̃
n(1+ε)PX̃(a) log2 PX(a)

. (7.69)
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Now, we have

Pr[Xn ∈ T nε (PX̃)] =
∑

xn∈T nε (PX̃)

P n
X(xn) (7.70)

(7.69)

≥
∑

xn∈T nε (PX̃)

2
∑
a∈suppP

X̃
n(1+ε)PX̃(a) log2 PX(a)

(7.71)

(7.67)

≥ (1− δε(n, PX̃))2n(1−ε)H(X̃)2
∑
a∈suppP

X̃
n(1+ε)PX̃(a) log2 PX(a)

(7.72)

= (1− δε(n, PX̃))2
−n[D(PX̃‖PX)−εH(X̃)+ε

∑
a∈suppP

X̃
PX̃(a) log2 PX(a)]

(7.73)

≥ (1− δε(n, PX̃))2−n[D(PX̃‖PX)+ε log2(µX̃µX)]. (7.74)

We can now analyze our encoding strategy. By (7.68), we have

Pr[Cn(u, v) ∈ T nε (PX)] ≥ [1− δε(PX , n)]2−n[D(PX‖PU )−ε log2(µXµU )] (7.75)

where by (7.66),

µX = min
a : PX(a)>0

PX(a) (7.76)

µU = min
a : PU (a)>0

PU(a). (7.77)

Note that since PU is uniform on X , we have µU = 1/|X |. For large enough n, we have
δε(PX , n) ≤ 1/2. The probability to generate 2nR

′
sequences Cn(u, v), v = 1, 2, . . . , 2nR

′
,

that are not in T nε (PX) is thus bounded from above by

(
1− 1

2
2−n[D(PX‖PU )−ε log2(µXµU )]

)2nR
′

≤ exp

[
−1

2
2−n[D(PX‖PU )−ε log2(µXµU )]2nR

′
]

(7.78)

where (7.78) follows by (1 − r)s ≤ exp(−rs). This probability tends to zero doubly
exponentially fast for any ε > 0 if

R′ > D(PX‖PU) + ε log2

1

µXµU
. (7.79)

Thus, as long as

Rtx < Rc − D(PX‖PU) (7.80)

our encoding strategy works with high probability.
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7.4. Problems

Problem 7.1. Show (7.15) in Example 7.2.
Problem 7.2. Suppose for a memoryless channel pY |X with input alphabet X = {0, 1},
you want to estimate

F = E[f(X, Y )] (7.81)

for the input distribution PX(0) = 1−PX(1) using n samples. Assume for the conditional
variances Var[f(X, Y )|X = 0] = Var[(f(X, Y )|X = 1] = σ2. You use an input sequence
xn with n0 = N(0|xn) zeros and n− n0 = N(1|xn) ones and you calculate the estimate

F̂ = PX(0) · 1

n0

∑
i : xi=0

f(0, yi) + PX(1) · 1

n− n0

∑
i : xi=1

f(1, yi). (7.82)

1. Calculate the variance Var(F̂ ).

2. Assuming n0 is a real variable, for which value of n0 is your variance expression
minimized?
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8. Decoding Metrics

In this chapter, we elaborate on the achievable rate for memoryless channels stated in
Theorem 7. In Section 8.1, we consider the optimal choice of decoding metrics and in
Section 8.2, we discuss how to assess the performance of given metrics.

8.1. Metric Design

By the information inequality (C.21), we know that

E[− log2 PZ(X)] ≥ E[− log2 PX(X)] = H(X) (8.1)

with equality if and only if PZ = PX . We now use this observation to choose optimal
metrics.

8.1.1. Mutual Information

Suppose we have no restriction on the decoding metric q. To maximize the achievable
rate, we need to minimize the uncertainty term in (7.57). We have

E
[
− log2

q(X, Y )∑
a∈X q(a, Y )

]
= E

[
E
[
− log2

q(X, Y )∑
a∈X q(a, Y )

∣∣∣∣Y ]] (8.2)

(8.1)

≥ E
[
E
[
− log2 PX|Y (X|Y )

∣∣Y ]] (8.3)

= H(X|Y ) (8.4)

with equality if we use the posterior probability distribution as metric, i.e.,

q(a, b) = PX|Y (a|b), a ∈ X , b ∈ Y . (8.5)

Note that this choice of q is not unique, in particular, q(a, b) = PX|Y (a|b)PY (b) is also
optimal, since the factor PY (b) cancels out. For the optimal metric, the achievable rate
is

Ropt
ps = [H(X)−H(X|Y )]+ = I(X;Y ) (8.6)

where we dropped the (·)+ operator because by the information inequality, mutual in-
formation is non-negative.
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Discussion

In [3, Chapter 5 & 7], the achievability of mutual information is shown using the
classical transceiver of Remark 5 with the likelihood decoding metric q(a, b) = pY |X(b|a),
a ∈ X , b ∈ Y . Comparing the classical transceiver with layered probabilistic shaping
(PS) for a common rate Rtx, we have

classical transceiver: ŵ = argmax
w∈{1,2,...,2nRtx}

n∏
i=1

pY |X(yi|c̃i(w)) (8.7)

layered PS: ŵ = argmax
w∈{1,2,...,2n[Rtx+D(PX‖PU )]}

n∏
i=1

PX|Y (ci(w)|yi)

= argmax
w∈{1,2,...,2n[Rtx+D(PX‖PU )]}

n∏
i=1

pY |X(yi|ci(w))PX(ci(w)) (8.8)

Comparing (8.7) and (8.8) suggests the following interpretation:

• The classical transceiver uses the prior information by evaluating the likelihood
density pY |X on the code C̃ that contains code words with distribution PX . The

code C̃ has size |C̃| = 2nRtx .

• Layered PS uses the prior information by evaluating the posterior distribution on
all code words in the ‘large’ code C that contains mainly code words that do not
have distribution PX . The code C has size |C| = 2n[Rtx+D(PX‖PU )].

Remark 7. The code C̃ of the classical transceiver is in general non-linear, since the set
of vectors with distribution PX is non-linear. It can be shown that all the presented
results for layered PS also apply when C is a random linear code. In this case, layered
PS evaluates a metric on a linear set while the classical transceiver evaluates a metric
on a non-linear set.

8.1.2. Bit-Metric Decoding

Suppose the channel input is a binary vector B = B1 · · ·Bm and the receiver uses a
bit-metric, i.e.,

q(a, y) =
m∏
j=1

qj(aj, y). (8.9)
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In this case, we have for the uncertainty term in (7.57)

E

[
− log2

q(B, Y )∑
a∈{0,1}m q(a, Y )

]
= E

[
− log2

∏m
j=1 qj(Bj, Y )∑

a∈{0,1}m
∏m

j=1 qj(aj, Y )

]
(8.10)

= E

[
− log2

∏m
j=1 qj(Bj, Y )∏m

j=1

∑
a∈{0,1} qj(a, Y )

]
(8.11)

= E

[
−

m∑
j=1

log2

qj(Bj, Y )∑
a∈{0,1} qj(a, Y )

]
(8.12)

=
m∑
j=1

E

[
− log2

qj(Bj, Y )∑
a∈{0,1} qj(a, Y )

]
(8.13)

where equality in (8.11) follows by (A.9). For each j = 1, . . . ,m, we now have

E

[
− log2

qj(Bj, Y )∑
a∈{0,1} qj(a, Y )

]
= E

[
E

[
− log2

qj(Bj, Y )∑
a∈{0,1} qj(a, Y )

∣∣∣∣∣Y
]]

(8.14)

≥ H(Bj|Y ) (8.15)

with equality if

qj(a, b) = PBj |Y (a|b), a ∈ {0, 1}, b ∈ Y . (8.16)

The achievable rate becomes the BMD rate

Rbmd
ps =

[
H(B)−

m∑
j=1

H(Bj|Y )

]+

(8.17)

which we first stated in [24] and discuss in detail in [25, Section VI.]. In [26], we prove
the achievability of (8.17) for discrete memoryless channels. For independent bit-level
B1, B2, . . . , Bm, the BMD rate can be also written in the form [27]

Rbmd,ind
ps =

m∑
j=1

I(Bj;Y ). (8.18)

8.1.3. Interleaved Coded Modulation

Suppose we have a vector channel with input X = X1 · · ·Xm with distribution PX on
the input alphabet Xm and output Y = Y1 · · ·Ym with distributions PY |X(·|a), a ∈ Xm,
on the output alphabet Ym. We consider the following situation:

• The Yi are potentially correlated, in particular, we may have Y1 = Y2 = · · · = Ym.
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• Despite the potential correlation, the receiver uses a memoryless metric q defined
on X × Y , i.e., a vector input x and a vector output y are scored by

qm(x,y) =
m∏
i=1

q(xi, yi). (8.19)

The reason for this decoding strategy may be an interleaver between encoder out-
put and channel input that is reverted at the receiver but not known to the decoder.
We therefore call this scenario interleaved coded modulation.

Using the same approach as for bit-metric decoding, we have

1

m
E
[
− log2

∏m
i=1 q(Xi, Yi)∑

a∈Xm
∏m

i=1 q(ai, Yi)

]
=

1

m
E
[
− log2

∏m
i=1 q(Xi, Yi)∏m

i=1

∑
a∈X q(a, Yi)

]
(8.20)

=
1

m

m∑
i=1

E
[
− log2

q(Xi, Yi)∑
a∈X q(a, Yi)

]
(8.21)

where equality in (8.20) follows by (A.9). Expression (8.21) is not very insightful. We
could optimize q for, say, the ith term, which would be

q(a, b) = PXi|Yi(a|b), a ∈ X , b ∈ Y (8.22)

but this would not be optimal for the other terms. We therefore choose a different
approach. Let I be a random variable uniformly distributed on I = {1, 2, . . . ,m} and
define X = XI , Y = YI . Then, we have

1

m

m∑
i=1

E
[
− log2

q(Xi, Yi)∑
a∈X q(a, Yi)

]
= E

[
− log2

q(XI , YI)∑
a∈X q(a, YI)

]
(8.23)

= E
[
− log2

q(X, Y )∑
a∈X q(a, Y )

]
. (8.24)

Thus, the optimal metric for interleaving is

q(a, b) = PX|Y (a|b) (8.25)

which can be calculated from

PX(a)pY |X(b|a) =
m∑
j=1

1

m
PXj(a)pYj |Xj(b|a). (8.26)

The achievable rate becomes

Ricm
ps = [H(X)−mH(X|Y )]+ . (8.27)

When the input is a binary vector B = B1 · · ·Bm, we get the bit-interleaved coded
modulation (BICM) rate

Rbicm
ps = [H(B)−mH(B|Y )]+ . (8.28)
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8.2. Metric Assessment

Suppose a decoder is constrained to use a specific metric q. In this case, our task is
to assess the metric performance by calculating a rate that can be achieved. If q is a
non-negative metric, an achievable rate is

Rps(q) =

[
H(X)− E

[
− log2

q(X, Y )∑
a∈X q(a, Y )

]]+

. (8.29)

However, higher rates may also be achievable by q. The reason for this is as follows:
suppose we have another metric q̃ that scores the code words in the same order as metric
q, i.e., we have

q̃(a1, b) > q̃(a2, b)⇔ q(a1, b) > q(a2, b), a1, a2 ∈ X , b ∈ Y . (8.30)

Then, Rps(q̃) is also achievable by q. An example for a order preserving transformation
is q̃(a, b) = eq(a,b). For a non-negative metric q, another order preserving transformation
is q̃(a, b) = q(a, b)s for s > 0. We may now find a better achievable rate for metric q by
calculating for instance

max
s>0

Rps(q
s). (8.31)

In the following, we will say that two metrics q and q̃ are equivalent if and only if the
order-preserving condition (8.30) is fulfilled.

Example 8.1 (AWGN Channel with BPSK). Consider a BPSK constellation X =
{−1, 1} and uniformly distributed input, i.e., PX(−1) = PX(1) = 1

2
. The channel

output is

Y = |h| ·X + Z

where |h| is a positive real number and where Z is zero mean Gaussian with variance
σ2. At the receiver, the decoder uses the metric

q(b, a) = b · a, b ∈ R, a ∈ X .

Note that the decoder does not make use of the channel parameters |h|, σ2. We
transform the metric into the equivalent non-negative metric esq(b,a) =: q̃(b, a) with
s > 0 and calculate the uncertainty term for q̃. We have

E

[
− log2

q̃(Y,X)∑
a∈{−1,1} q̃(Y, a)

]
= E

[
E

[
− log2

q̃(Y,X)∑
a∈{−1,1} q̃(Y, a)

∣∣∣∣∣Y
]]
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For Y = b, the inner expectation is

E

[
− log2

q̃(Y,X)∑
a∈{−1,1} q̃(Y, a)

∣∣∣∣∣Y = b

]

and it is calculated for a′ ∈ {−1, 1} according to

PX|Y (a′|b) =
PX(a′)pY |X(b|a′)

pY (b)

=
1
2
pZ(b− |h|a′)

1
2
pZ(b+ |h|) + 1

2
pZ(b− |h|)

=
pZ(b− |h|a′)

pZ(b+ |h|) + pZ(b− |h|)

=
e−

(b−|h|a′)2
2σ2

e−
(b+|h|)2

2σ2 + e−
(b−|h|)2

2σ2

=
e
|h|a′b
σ2

e−
|h|b
σ2 + e

|h|b
σ2

.

Note that for s = |h|/σ2, we also have

q̃(b, a′)∑
a∈{−1,1} q̃(b, a)

=
e
|h|a′b
σ2

e−
|h|b
σ2 + e

|h|b
σ2

.

Thus, we have

E

[
− log2

q̃(Y,X)∑
a∈{−1,1} q̃(Y, a)

∣∣∣∣∣Y = b

]
(a)

≥ E
[
− log2 PX|Y (X|b)

∣∣Y = b
]

= H(X|Y = b)

with equality in (a) if s = |h|/σ2. Thus, for this choice of s, the uncertainty term is
H(X|Y ) and the achievable rate is I(X;Y ). Observations:

• Although the original metric q(b, a) = a·b does not take the channel parameters
|h|, σ2 into account, it is optimal because it achieves the mutual information
I(X;Y ).

• The optimal value s∗ = |h|/σ2 recovers the channel parameters.
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8.2.1. Generalized Mutual Information

Suppose the input distribution is uniform, i.e., PX(a) = 1/|X |, a ∈ X . In this case, we
have

max
s>0

Rps(q
s) = max

s>0

[
E

[
log2

q(X, Y )s 1
PX(X)∑

a∈X q(a, Y )s

]]+

(8.32)

= max
s>0

E
[
log2

q(X, Y )s∑
a∈X PX(a)q(a, Y )s

]
(8.33)

where we could move PX(a) under the sum, because PX is by assumption uniform,
and where we could drop the (·)+ operator because for s = 0, the expectation is zero.
The expression in (8.33) is called generalized mutual information (GMI) in [20] and was
shown to be an achievable rate for the classical transceiver. This is in line with Remark 6,
namely that for uniform input, layered PS is equivalent to the classical transceiver. For
non-uniform input, the GMI and (8.32) may differ, i.e., we may not have equality in
(8.33).

Discussion

Suppose for a non-uniform input distribution PX and a metric q, the GMI evaluates to
R, implying that a classical transceiver can achieve R. Can also layered PS achieve R,
possibly by using a different metric? The answer is yes. Define

q̃(a, b) = q(a, b)PX(a)
1
s , a ∈ X , b ∈ Y (8.34)

where s is the optimal value maximizing the GMI. We calculate a PS achievable rate
for q̃ by analyzing the equivalent metric q̃s. We have

Rps =

[
E

[
log2

q̃s(X, Y ) 1
PX(X)∑

a∈X q̃
s(a, Y )

]]+

(8.35)

=

[
E
[
log2

qs(X, Y )∑
a∈X PX(a)qs(a, Y )

]]+

(8.36)

= R (8.37)

which shows that R can also be achieved by layered PS. It is important to stress that
this requires a change of the metric: for example, suppose q is the Hamming metric of
a hard-decision decoder (see Section 8.2.3). In general, this does not imply that also q̃
defined by (8.34) is a Hamming metric.
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8.2.2. LM-Rate

For the classical transceiver of Remark 5, the work [21] shows that the so-called LM-Rate
defined as

RLM(s, r) =

[
E

[
log2

q(X, Y )sr(X)∑
a∈suppPX

PX(a)q(a, Y )sr(a)

]]+

(8.38)

is achievable, where s > 0 and where r is a function on X . By choosing s = 1 and
r(a) = 1/PX(a), we have

RLM(1, 1/PX) =

[
E

[
log2

q(X, Y ) 1
PX(X)∑

a∈suppPX
q(a, Y )

]]+

(8.39)

≥
[
E

[
log2

q(X, Y ) 1
PX(X)∑

a∈X q(a, Y )

]]+

(8.40)

= Rps (8.41)

with equality in (8.40) if suppPX = X . Thus, formally, our achievable rate can be
recovered from the LM-Rate. We emphasize that [21] shows the achievability of the
LM-Rate for the classical transceiver of Remark 5, and consequently, RLM and Rps

have different operational meanings, corresponding to achievable rates of two different
transceiver setups, with different random coding experiments, and different encoding
and decoding strategies.

8.2.3. Hard-Decision Decoding

Hard-decision decoding consists of two steps. First, the channel output alphabet is
partitioned into disjoint decision regions

Y =
⋃
a∈X
Ya, Ya ∩ Yb = ∅ if a 6= b (8.42)

and a quantizer ω maps the channel output to the channel input alphabet according to
the decision regions, i.e.,

ω : Y → X , ω(b) = a⇔ b ∈ Ya. (8.43)

Second, the receiver uses the Hamming metric of X for decoding, i.e., we have

q(a, ω(y)) = 1(a, ω(y)) =

{
1, if a = ω(y)

0, otherwise.
(8.44)
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We next derive an achievable rate by analyzing the equivalent metric es1(·,·), s > 0. For
the uncertainty term, we have

E
[
− log2

es1[X,ω(Y )]∑
a∈X e

s1[a,ω(Y )]

]
= E

[
− log2

es1[X,ω(Y )]

|X | − 1 + es

]
(8.45)

= −Pr[X = ω(Y )] log2

es

|X | − 1 + es
− Pr[X 6= ω(Y )] log2

1

|X | − 1 + es
(8.46)

= −(1− ε) log2

es

|X | − 1 + es
− ε log2

1

|X | − 1 + es
(8.47)

= −(1− ε) log2

es

|X | − 1 + es
−
|X |−1∑
`=1

ε

|X | − 1
log2

1

|X | − 1 + es
(8.48)

where we defined ε = Pr(X 6= ω(Y )). By (8.1), the last line is maximized by choosing

s : 1− ε =
es

|X | − 1 + es
and

ε

|X | − 1
=

1

|X | − 1 + es
(8.49)

which is achieved by

es =
(|X| − 1)(1− ε)

ε
. (8.50)

With this choice for s, we have

− (1− ε) log2(1− ε)−
|X |−1∑
`=1

ε

|X | − 1
log2

ε

|X | − 1

= −(1− ε) log2(1− ε)− ε log2 ε︸ ︷︷ ︸
=:H2(ε)

+ε log2(|X | − 1) (8.51)

= H2(ε) + ε log2(|X | − 1) (8.52)

where H2(·) is the binary entropy function. The term (8.52) corresponds to the condi-
tional entropy of a |X |-ary symmetric channel with uniform input, see Figure 8.1 for an
illustration. We conclude that by hard-decision decoding, we can achieve

Rhd
ps = [H(X)− [H2(ε) + ε log2(|X | − 1)]]+ (8.53)

where

ε = 1− Pr[X = ω(Y )] (8.54)

= 1−
∑
a∈X

PX(a)

∫
Ya
pY |X(τ |a) dτ. (8.55)
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X ′

0

1

...

M − 1

Y ′

0

1

...

M − 1

1− ε

1− ε

1− ε

Figure 8.1.: The M -ary symmetric channel. Each red transition has probability ε
M−1

.
Note that for M = 2, the channel is the binary symmetric channel. For
uniformly distributed input X ′, we have H(X ′|Y ′) = H2(ε) + ε log2(M − 1).

8.2.4. Binary Hard-Decision Decoding

Suppose the channel input is the binary vector B = B1 · · ·Bm and the decoder uses m
binary quantizers, i.e., we have

Y = Y0j ∪ Y1j, Y1j = Y \ Y0j (8.56)

ωj : Y → {0, 1}, ωj(b) = a⇔ b ∈ Yja. (8.57)

The receiver uses a binary Hamming metric, i.e., we have

q(a, b) = 1(a, b), a, b ∈ {0, 1} (8.58)

qm(a, b) =
m∑
j=1

1(aj, bj) (8.59)

and we analyze the equivalent metric

esq
m(a,b) =

m∏
j=1

es1(aj ,bj), s > 0. (8.60)

Since the decoder uses the same metric for each bit-level j = 1, 2, . . . ,m, binary hard-
decision decoding is an instance of interleaved coded modulation, which we discussed in
Section 8.1.3. Thus, defining the auxiliary random variable I uniformly distributed on
{1, 2, . . . ,m} and

B = BI , B̂ = ωI(Y ) (8.61)
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we can use the interleaved coded modulation result (8.24). We have for the normalized
uncertainty term

1

m
E

[
− log2

∏m
j=1 e

s1[Bj ,ωj(Y )]∑
a∈{0,1}m

∏m
j=1 e

s1[aj ,ωj(Y )]

]
(8.24),(8.61)

= E

[
− log2

es1(B,B̂)∑
a∈{0,1} e

s1(a,B̂)

]
(8.62)

= −Pr(B = B̂) log2

es

es + 1
− Pr(B 6= B̂)︸ ︷︷ ︸

=:ε

log2

1

es + 1
(8.63)

(8.1)

≥ H(ε) (8.64)

with equality if

s :
1

es + 1
= ε. (8.65)

Thus, with a hard decision decoder, we can achieve

Rhd,bin
ps = [H(B)−mH2(ε)]+ (8.66)

where

ε =
m∑
j=1

1

m

∑
a∈{0,1}

PBj(a)

∫
Yja

pY |Bj(τ |a) dτ. (8.67)

For uniform input, the rate becomes

Rhd,bin
uni = m−mH2(ε) = m[1−H2(ε)]. (8.68)

8.3. Problems

Problem 8.1. For a binary input B and real-valued output Y , a decoder uses the metric

q(y, b) = (−1)bL(y) = (1− 2b)L(y), y ∈ R, b ∈ {0, 1}

where

L(y) = log
PB(0)pY |B(y|0)

PB(1)pY |B(y|1)
.

1. Show that

PB|Y (0|y) =
e
L(y)

2

e
L(y)

2 + e−
L(y)

2

, PB|Y (1|y) =
e−

L(y)
2

e
L(y)

2 + e−
L(y)

2

.
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X

0

1

Y

0

1

1

1
2

1
2

Figure 8.2.: The Z-channel.

2. To calculate an achievable rate, we evaluate the uncertainty term in (7.57) for the
equivalent non-negative metric q̃(y, b) = esq(y,b). For which s is the uncertainty
term equal to the minimum value H(B|Y )?

Problem 8.2. Consider the Z-channel in Figure 8.2. The input distribution is uniform,
i.e., PX(0) = PX(1) = 1

2
.

1. Calculate the output distribution PY and the conditional input distributions PX|Y (·|0)
and PX|Y (·|1).

2. Calculate the mutual information I(X;Y ).

3. Specify a decoding metric q1(·, ·) that achieves R = I(X;Y ).

4. Transform q1 into an equivalent metric q̃1 that takes the values 0 and 1.
Hint: Two metrics are equivalent if they imply the same decoding rule.

5. The receiver now assumes the channel is a binary symmetric channel and uses
metric q2(0, 0) = q2(1, 1) = 1 and q2(0, 1) = q2(1, 0) = −1. Show that this metric
can achieve H(X)−H2[Pr(X = Y )], where

H2(α) = −α log2 α− (1− α) log2(1− α)

is the binary entropy function.
Hint: Analyze the equivalent non-negative metric exp[sq2(x, y)] with s > 0.

6. Calculate H(X)−H2[Pr(X = Y )] and the achievable rate degradation that results
from using q2 instead of q1.

7. Transform q2 into an equivalent metric q̃2 that takes the values 0 and 1.
Hint: Two metrics are equivalent if they imply the same decoding rule.
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9. Distribution Matching

In Chapter 7 and 10, we repeatedly encountered situations where a functional of an input
vector xn depends only on its empirical distribution, and not on the particular ordering
of its entries, i.e., any permuted version of xn results in the same system behavior. This
suggests to encode information into the permutation of xn. Mapping source bits to
sequences with a desired distribution is called distribution matching. In this chapter, we
discuss the CCDM [28] and analyze its rate. The CCDM is a fundamental component of
the transceiver architecture that we will define in Chapter 6 and analyze in Chapter 10.

9.1. Types

Types as defined in Appendix C.1 play a central role for the CCDM. We therefore start
this chapter by reviewing types and their properties.

Consider a sequence xn = x1x2 · · ·xn with entries in a finite alphabet X . Let N(a|xn)
be the number of times letter a ∈ X occurs in xn, i.e.,

N(a|xn) =
∣∣∣{i ∈ {1, 2, . . . , n} : xi = a

}∣∣∣ , a ∈ X . (9.1)

The empirical distribution of xn is

Pxn(a) =
N(a|xn)

n
, a ∈ X . (9.2)

Since every permutation of xn has the same empirical distribution, we define na =
N(a|xn) and write

PX(a) =
na
n
, a ∈ X . (9.3)

Note that every probability PX(a), a ∈ X , is an integer multiple of 1/n. The distribution
PX is therefore called an n-type. The set of all length n sequences with empirical
distribution PX is called the type class of the n-type PX and denoted by T n(PX).

Note that we have defined the distribution PX as the empirical distribution of a
length n sequence xn. Often, we start with a distribution that we obtained, e.g., from
maximizing a mutual information, and are then interested in length n sequences with the
optimal distribution. This is only approximately possible, since in general, the optimal
distribution is not n-type. In Section 9.3, we discuss the quantization of arbitrary
distributions to n-types.
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9. Distribution Matching

9.2. Constant Composition Distribution Matcher
(CCDM)

A code C ⊆ T n(PX) is called a constant composition code. A CCDM encodes length k
bit strings to T n(PX), i.e., it implements a fixed-to-fixed length mapping into T n(PX).

Example 9.1. Consider the 4-ASK constellation X = {±1,±3} and the block
length n = 4. The amplitudes are A = {1, 3}. Suppose the desired amplitude
distribution is

PA(1) =
3

4
, PA(3) =

1

4
. (9.4)

The probabilities are integer multiples of 1/4, so PA is a 4-type. The corresponding
4-type class is

T 4(PA) = {(1, 1, 1, 3), (1, 1, 3, 1), (1, 3, 1, 1), (3, 1, 1, 1)} (9.5)

where in each sequence, the amplitudes 1 and 3 occur n1 = 3 and n3 = 1 times,
respectively. A CCDM maps length k binary strings to sequences in T 4(PA). There
are 4 sequences in T 4(PA), so we have

k = log2 |T 4(PA)| = 2. (9.6)

The following look-up table (LUT) defines a CCDM.

00 7→(1, 1, 1, 3), 01 7→ (1, 1, 3, 1),

10 7→(1, 3, 1, 1), 11 7→ (3, 1, 1, 1).
(9.7)

The mapping is one-to-one and therefore invertible on its image.

9.2.1. Rate

The rate of a CCDM is

k

n

[
input bits

output symbols

]
. (9.8)

We are interested in making the rate as large as possible, so we set the input length
to the highest value for which a one-to-one mapping into T n(PX) exists. This value is
given by

k = blog2 |T n(PX)|c . (9.9)

Suppose the output alphabet is 1, 2, . . . ,M . Let ni be the number of occurrences of i in
each sequence in T n(PX), i.e.,

ni = nPX(i), i = 1, 2, . . . ,M. (9.10)
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9.2. Constant Composition Distribution Matcher (CCDM)

We can now write the size of T n(PX) as

|T n(PX)| = n!

n1!n2! · · ·nM !
=

(
n

n1, n2, . . . , nM

)
(9.11)

where the term on the right-hand side is called a multinomial coefficient. For the CCDM
rate, we have

Rccdm(PX , n) =
k

n
=
blog2 T n(PX)c

n
=

⌊
log2

(
n

n1,...,nM

)⌋
n

. (9.12)

In Problem 9.1, we show how the logarithm of the multinomial coefficient and the CCDM
rate can be calculated numerically even for very large n. By Problem 9.4, the CCDM
rate is bounded above by the entropy of PX , i.e.,

Rccdm(PX , n) ≤ H(PX). (9.13)

We define the CCDM rate loss by

Rloss(PX , n) = H(PX)−Rccdm(PX , n). (9.14)

The next theorem characterizes how fast the rate loss approaches zero.

Theorem 8. Let PX be an n′-type and let n be a multiple of n.

1. The rate loss is bounded above and below by logn
n

, i.e.,

0 < lim
n→∞

Rloss(PX , n)
logn
n

<∞ (9.15)

that is, Rloss(PX , n) ∈ Θ( logn
n

).

2. We have

Rccdm(PX , n)
n→∞−−−→ H(PX). (9.16)

Proof. We prove (9.15) in Section 9.4. The limit (9.16) is a consequence of (9.15).

Remark 8. For binary output alphabets, (9.15) is proven in [29]. For arbitrary alphabets,
(9.16) is proven in [28].

Example 9.2 (Example 9.1 continued). The CCDM rate is

Rccdm(PA, 4) =
k

n
=

log2 4

4
=

1

2
. (9.17)

The entropy of PA is

H(PA) = 0.8113. (9.18)
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Figure 9.1.: CCDM rate loss in Example 9.2.

Consequently, the rate loss is

Rloss(PA, 4) = 0.3113

[
bit

amplitude

]
. (9.19)

For n = 10 000, the CCDM rate is

Rccdm(PA, 10 000) =
8106

10 000
= 0.8106 (9.20)

which corresponds to a rate loss of approximately 7 × 10−4 bits per amplitude. In
Figure 9.1, we display the rate loss for n = 4, 8, . . . , 1× 103.

9.2.2. Implementation

Theorem 8 suggests that achieving a small rate loss requires a large block length, which
is confirmed in Example 9.2. Since the size of T n(PX) grows exponentially with n,
the implementation of the CCDM by a LUT as in (9.7) becomes infeasible because of
memory limitations. In [28], we propose an algorithm based on arithmetic coding that
performs the CCDM mapping without storing T n(PX). For binary output alphabets,
an algorithm similar to [28] was proposed in [30].
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9.3. Distribution Quantization

9.3. Distribution Quantization

Suppose we want to use the distribution PX in our system by using a CCDM with
output length n, however, PX is not n-type. Thus, we must approximate PX by an
n-type distribution PX′ . Here, we will quantify how good PX′ approximates PX by the
variational distance, which is given by

‖PX − PX′‖1 =
∑
a∈X
|PX(a)− PX′(a)|. (9.21)

Other measures, e.g., the informational divergence can be used; see for example [31].
We will first argue why the variational distance is a reasonable choice for our purposes
and we will then state a simple algorithm to find an n-type approximation and bound
the approximation error.

9.3.1. n-Type Approximation for CCDM

Two important parameters for system design are power and rate. Suppose the variational
distance of PX and PX′ is equal to δ. Let amax be the symbol in X of largest power. The
power resulting from using PX′ is then bounded above and below by

E(X2)− δa2
max ≤ E(X ′2) ≤ E(X2) + δa2

max. (9.22)

In particular, as the variational distance δ approaches zero, the power E(X ′2) approaches
the desired power E(X2). Next, consider the asymptotic CCDM rate given by the
entropy. By the continuity of entropy (C.19), if δ ≤ 1

2
, we have

H(PX) + δ log2

δ

|X | ≤ H(PX′) ≤ H(PX)− δ log2

δ

|X | . (9.23)

Again, as δ approaches zero, the rate H(PX′) approaches the desired rate H(PX).

9.3.2. n-Type Approximation Algorithm

The following algorithm calculates an n-type approximation PX′ for an arbitrary distri-
bution PX .

1. For each a ∈ X , calculate

Q(a) =
bnPX(a)c

n
(9.24)

and define

L = n−
∑
a∈X

Q(a)n. (9.25)

Note that by definition, L is an integer.
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2. For L symbols with largest approximation error PX(a) − Q(a), assign PX′(a) =
Q(a) + 1

n
. For the remaining symbols, assign PX′(a) = Q(a).

The algorithm immediately implies

|PX′(a)− PX(a)| < 1

n
, a ∈ X (9.26)

and

‖PX′ − PX‖1 <
|X |
n
. (9.27)

Example 9.3. Consider the distribution PX(0) = 1−PX(1) = 1/π and n = 1× 103.
The rounding step of the algorithm yields

Q(0) =
318

1000
, Q(1) =

681

1000
(9.28)

and L = 1000− 318− 681 = 1. The approximation errors are

PX(0)−Q(0) ≈ 3.1× 10−4, PX(1)−Q(1) ≈ 6.9× 10−4 (9.29)

so we increase Q(1) by 1/n and leave Q(0) unchanged. The resulting n-type approx-
imation is

PX′(0) =
318

1000
, PX′(1) =

682

1000
. (9.30)

The variational distance is

‖PX′ − PX‖1 ≈ 6.1977× 10−4. (9.31)

Remark 9. In [31], it is shown that the above algorithm is optimal in terms of variational
distance, and furthermore, the bound (9.27) is tightened.

9.4. Proof of Theorem 8

We now prove that the rate loss of the CCDM is Θ( logn
n

).
In our proof, we will use Stirling’s formula (A.5), which provides the upper bound

n! <
√

2πnn+ 1
2 e−ne

1
12n . (9.32)

To get rid of the e
1

12n term, which depends on n, we use instead

n! ≤ e · nn+ 1
2 e−n. (9.33)
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For n = 1, (9.33) holds with equality, and for n ≥ 2, we have
√

2πe
1

12n < e, so (9.33)
follows by (9.32). Stirling’s formula (A.5) provides the lower bound

n! >
√

2πnn+ 1
2 e−ne

1
12n+1 >

√
2π · nn+ 1

2 e−n. (9.34)

Let PX be an n-type on an alphabet of size M . We will need in our proof the identity

nn

nn1
1 n

n2
2 · · ·nnMM

= 2nH(PX) (9.35)

which is derived in Problem 9.3.
For the size of the n-type class, we now have

|T n(PX)| = n!

n1! · · ·nM !
<

enn+ 1
2 e−n∏M

i=1

√
2πn

ni+
1
2

i e−ni
(9.36)

=
e

(2π)
M
2

· nn+ 1
2∏M

i=1 n
ni+

1
2

i

· e−n

e−(n1+n2+···+nM )
(9.37)

=
e

(2π)
M
2︸ ︷︷ ︸

=:K1

·2nH(PX)

√
n∏M
i=1 ni

(9.38)

where

• (9.36) follows by using (9.33) and (9.34),

• (9.38) follows by (9.35) and n1 + · · ·+ nM = n.

Taking the logarithm and dividing by n, we get

log2 |T n(PX)|
n

≤ H(PX) +
log2K1

n
+

1

2n
log2

n∏M
i=1 PX(i)n

(9.39)

= H(PX) +
log2K1 − 1

2
log2

∏M
i=1 PX(i)

n
− M − 1

2

log2 n

n
. (9.40)

Along the same lines, we get the lower bound

log2 |T n(PX)|
n

≥ H(PX) +
log2K2 − 1

2
log2

∏M
i=1 PX(i)

n
− M − 1

2

log2 n

n
. (9.41)

where

K2 =

√
2π

eM
. (9.42)

Finally, the CCDM rate is bounded below and above by

log2 |T n(PX)|
n

− 1

n
<
blog2 |T n(PX)|c

n
≤ log2 |T n(PX)|

n
(9.43)
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The rate loss

Rloss(PX , n) = H(PX)− blog2 |T n(PX)|c
n

(9.44)

is now by (9.43) and (9.40) bounded above by logn
n

asymptotically, i.e., Rloss(PX , n) ∈
O( logn

n
), and by (9.43) and (9.41), it is bounded below by logn

n
asymptotically, i.e.,

Rloss(PX , n) ∈ Ω( logn
n

). This implies the desired result

Rloss(PX , n) ∈ Θ

(
log n

n

)
. (9.45)

9.5. Problems

Problem 9.1. In this problem, we calculate a CCDM rate. We consider the following
setup.

• 8-ASK constellation.

• n = 21 600 channel uses.

• Amplitude distribution

PA(1) =
13 258

n
, PA(3) =

6550

n
, PA(5) =

1599

n
, PA(7) =

193

n
.

1. Calculate the entropy H(PA).

A CCDM can encode k = blog2 |T n(PA)|c source bits. Our next task is to calculate this
number.

2. Define PA(a) = ca/n. Argue that

|T n(PA)| =
(

n

c1, c3, c5, c7

)
.

3. Express the multinomial coefficient as the product of binomial coefficients.

4. n! is an incredibly large number. How can you calculate log2

(
n
k

)
avoiding large

numbers?

5. Combine solutions 3. and 4. to derive a strategy for efficiently calculating log2 |T n(PA)|.
6. Compare Rccdm = blog2 |T n(PA)|c/n to H(PA).

Problem 9.2. Let PX be an n-type on the alphabet X and suppose k = log2 |T n(PX)| is
an integer, so that the CCDM encodes onto T n(PX). Let Un be uniformly distributed
on {0, 1}k and define Cn = ccdm(Uk). Show that the marginal distributions PCi are
equal to PX , i.e.,

PCi(a) = PX(a), a ∈ X , i = 1, 2, . . . , n. (9.46)

Problem 9.3. Show the identity (9.35).
Problem 9.4. Use (9.40) to show (9.13).
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10. Error Exponents

In this chapter, we use the techniques developed in Chapter 7 to derive error exponents
and achievable rates for the PAS transceiver architecture that we developed in Chapter 6.
This chapter extends the results in Chapter 7 as follows.

• The non-constructive shaping layer in Section 7.2 based on random coding is re-
placed by a constructive shaping layer using the CCDM developed in Chapter 9.

• The results of this chapter also hold when the FEC layer uses a random linear
code.

• The error exponents can be used for finite block length.

The results of this chapter rely on the assumption that following the PAS principle, the
input distribution of interest decomposes into two independent distributions, namely a
potentially non-uniform ‘amplitude’ distribution and a uniform ‘sign’ distribution. In
this sense, the results of this chapter are less general than the results in Chapter 7.

10.1. FEC Layer

We consider the following transceiver setup:

• (As in Section 7.1) The channel is discrete-time with input alphabet X and output
alphabet Y . We derive our results assuming a continuous-valued output. Our
results also apply for discrete output alphabets.

• (Different from Section 7.1) Random coding: For indices w = 1, 2, . . . , |C|, we
generate code words Cn(w) according to a general set of distributions PCn(w). In
particular, we permit different distributions for different indices and we also allow
dependence among the code word entries of the same code word. The code is

C = {Cn(1), Cn(2), . . . , Cn(|C|)}. (10.1)

• (As in Section 7.1) The code rate is Rc = log2(|C|)
n

and equivalently, we have |C| =
2nRc code words.

• (As in Section 7.1) We consider a non-negative decoding metric q on X × Y and
we define the memoryless metric

qn(xn, yn) :=
n∏
i=1

q(xi, yi), xn ∈ X n, yn ∈ Yn. (10.2)
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index w0 ∈
{1, . . . , 2nRc}

FEC
encoder

Cn(w0) = xn

Channel

decoded
index Ŵ

FEC
decoder

yn

FEC layer

random code C ∼ PCn(·)

Figure 10.1.: Random coding experiment for code rate error exponent. In difference to
Figure 7.1, the code words generated for each index w according to an
individual distribution PCn(w).

For the channel output yn, we let the receiver decode with the rule

Ŵ = argmax
w∈{1,...,2nRc}

n∏
i=1

q(Ci(w), yi). (10.3)

• (As in Section 7.1) We consider the decoding error probability

Pe = Pr(Ŵ 6= w0|Cn(w0) = xn, Y n = yn) (10.4)

where w0 is the index of the transmitted code word, Cn(w0) = xn is the transmitted
code word, yn is the channel output sequence, and Ŵ is the decoded index at the
receiver. Note that the code words Cn(w), w 6= w0 against which the decoder
attempts to decode are random and the transmitted code word Cn(w0) = xn and
the channel output yn are deterministic.

10.1.1. Code Rate Error Exponent

We consider the setting in Figure 10.1, i.e., we condition on that index w0 was encoded
to Cn(w0) = xn. For notational convenience, we assume without loss of generality
w0 = 1. We analyze the error probability Pr(Ŵ 6= 1|Cn(1)) = xn, Y n = yn), averaged
over the random code. Note that we have Cn(1) = xn and for w = 2, 3, . . . , |C|, we have
Cn(w) ∼ PCn(w).
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10.1. FEC Layer

We have the implications

Ŵ 6= 1⇒ Ŵ = w′ 6= 1 (10.5)

⇒ L(w′) :=
qn(Cn(w′), yn)

qn(xn, yn)
≥ 1 (10.6)

⇒
|C|∑
w=2

L(w) ≥ 1 (10.7)

⇒
[ |C|∑
w=2

L(w)
]ρ
≥ 1, ρ ≥ 0. (10.8)

We will use ρ for the same purposes as in [3, Chapter 5]: We will optimize over ρ to
maximize the error exponent and to identify achievable rates. If event A implies event
B, then Pr[A] ≤ Pr[B]. Therefore, we have

Pr(Ŵ 6= 1|Cn(1) = xn, Y n = yn)

≤ Pr

[
|C|∑
w=2

L(w)
]ρ
≥ 1

∣∣∣∣∣∣Cn(1) = xn, Y n = yn

 (10.9)

≤ E

[
|C|∑
w=2

L(w)
]ρ∣∣∣∣∣∣Cn(1) = xn, Y n = yn

 (10.10)

= qn(xn, yn)−ρ E

[ |C|∑
w=2

qn[Cn(w), yn]
]ρ (10.11)

where

• the inequality in (10.10) follows by Markov’s inequality (B.6),

• equality in (10.11) follows because for w 6= 1, the code word Cn(w) and the
transmitted code word Cn(1) were generated independently so that Cn(w) and
[Cn(1), Y n] are independent.

Observe that z → zρ is for 0 ≤ ρ ≤ 1 a concave function and for 1 ≤ ρ a convex function,
see Figure 10.2. We therefore restrict the parameter ρ to

0 ≤ ρ ≤ 1 (10.12)

so that (·)ρ is concave and by Jensen’s inequality (A.7), we have E(Zρ) ≤ E(Z)ρ. We
use this to bound (10.11) further:

(10.11) ≤ qn(xn, yn)−ρ E

 |C|∑
w=2

qn[Cn(w), yn]

ρ (10.13)

= |C|ρqn(xn, yn)−ρ E

 1

|C|

|C|∑
w=2

qn[Cn(w), yn]

ρ . (10.14)

93



10. Error Exponents

0 0.2 0.4 0.6 0.8 1 1.2 1.4
0

0.5

1

1.5

2

z

z
ρ

ρ = 0.25
ρ = 0.5
ρ = 1
ρ = 2

Figure 10.2.: The function z 7→ zρ is concave for 0 ≤ ρ ≤ 1 and it is convex for 1 ≤ ρ.

10.1.2. PAS Code Rate Error Exponent

So far, we have analyzed the error probability of decoding a transmitted code word
Cn(w0) = xn against the random code C ∼ PCn(·). We next consider a specific instance
of the random coding experiment PCn(·), following the probabilistic amplitude shaping
(PAS) principle that we developed in Chapter 6. This will allow us to explicitly state
an encoder and to quantify into how many distinct code words we can encode. In this
way, we will be able to associate a rate with the error exponent.

We now make the assumption that the input alphabet decomposes into two parts
X = A × S. We represent the code word index by w = ansγn, i.e., code size and code
rate are respectively given by

|C| = |A|n|S|γn (10.15)

Rc = log2 |A|+ γ log2 |S|. (10.16)

Example 10.1 (Amplitude Shift Keying). The 8-ASK constellation

X = {±1,±3,±5,±7} (10.17)
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10.1. FEC Layer

decomposes into an amplitude set and a sign set via

A = {1, 3, 5, 7}, S = {−1, 1} (10.18)

A× S → X : (a, s) 7→ a · s (10.19)

X → A× S : x 7→ (|x|, sign(x)). (10.20)

For a 2m-ASK constellation, the code rate is

Rc = log2 |A|+ γ log2 |S| = m− 1 + γ. (10.21)

Example 10.2 (Quadrature Amplitude Modulation). The 16-quadrature amplitude
modulation (QAM) constellation

X = {±1± j,±1± 3j,±3± j,±3± 3j} (10.22)

decomposes into

A = {(±1,±3)}, S = {(±1,±1)} (10.23)

A× S → X : (a, s) 7→ a1s1 + ja2s2 (10.24)

X → A× S : x 7→ [(|Re(x)|, | Im(x)|), (sign[Re(x)], sign[Im(x)])]. (10.25)

Note that this is equivalent to interpreting 16-QAM as the Cartesian product of two
4-ASK constellations.

Our random coding experiment is as follows. We encode the index w ∈ An × Sγn to

w = ansγn 7→ Cn(w) = anSn(w) (10.26)

where the Si(w), i = 1, 2, . . . , n are independent and uniformly distributed on S. Note
that this corresponds to partially systematic encoding: the part an of the code word
index appears in the code word. Next, we condition on an index w0 = ansγn. This index
selects a code word anSn, which consists of the deterministic part an and a random
part Sn, which is stochastically independent of w0. In terms of the random coding
distribution PCn(·), we have

PCn(ansγn)(α
nσn) =

{
1
|S|n , if αn = an

0, otherwise
, an, αn ∈ An, sγn ∈ Sγn, σn ∈ Sn (10.27)

where PCn(w0) indeed depends on w0. The PAS coding experiment is displayed in Fig-
ure 10.3. We have the following differences to the coding experiment in Figure 10.1:

1. For the transmitted code word, we condition on Cn(w0) = anSn, which is random.

2. Since the transmitted code word is random, also the channel output Y n is random.
We therefore analyze the average error probability, where the average is over Sn

and Y n.
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index
w0 = ansγn

∈ An × Sγn
FEC

encoder
Cn(w0) = anSn

Channel
pY |X

decoded
index Ŵ

FEC
decoder

Y n

FEC layer

random code C ∼ PCn(·)

Figure 10.3.: PAS random coding experiment.

3. We assume the channel is memoryless with channel law pY |X .

We now have

Pr(Ŵ 6= w0|An = an) = E
[
Pr(Ŵ 6= w0|Xn = anSn, Y n)

]
(10.28)

(10.14)

≤ |C|ρ E

qn(anSn, Y n)−ρ E

 1

|C|
∑

w∈An×Sγn
w 6=w0

qn[Cn(w), Y n]

∣∣∣∣∣∣∣Y n


ρ∣∣∣∣∣∣∣An = an

 .

(10.29)
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10.1. FEC Layer

We develop the innermost expectation in (10.29). We have

E

 1

|C|
∑

w∈An×Sγn
w 6=w0

qn[Cn(w), Y n]

∣∣∣∣∣∣∣Y n


= E

 1

|C|
∑

w∈An×Sγn
w 6=w0

qn[an(w)Sn(w), Y n]

∣∣∣∣∣∣∣Y n

 (10.30)

=
1

|A|n|S|γn
∑

w∈An×Sγn
w 6=w0

∑
tn∈Sn

1

|S|n q
n[an(w)tn, Y n] (10.31)

=
1

|S|γn
∑

w∈An×Sγn
w 6=w0

∑
tn∈Sn

1

|X |n q
n[an(w)tn, Y n] (10.32)

=
1

|S|γn
∑

w∈An×Sγn
w 6=w0

∑
tn∈Sn

n∏
i=1

1

|X |q[ai(w)ti, Yi] (10.33)

≤ 1

|S|γn
∑
an∈An

∑
sγn∈Sγn

∑
tn∈Sn

n∏
i=1

1

|X |q(aiti, Yi) (10.34)

=
∑
an∈An

∑
tn∈Sn

n∏
i=1

1

|X |q(aiti, Yi) (10.35)

=
n∏
i=1

∑
a∈A

∑
t∈S

1

|X |q(at, Yi) (10.36)

=
n∏
i=1

∑
c∈X

1

|X |q(c, Yi), with anSn Y nChannel (10.37)

where

• (10.30) follows by (10.26),

• (10.31) follows because for each w 6= w0, Sn(w) is independent of Y n and because
the entries of the Sn(w) are independent and uniformly distributed on S,

• (10.32) and (10.37) use X = A× S,

• (10.33) follows because the metric qn is memoryless,

• the inequality in (10.34) follows since the sum now includes index w0.

Remark 10. Note that we would get (10.37) also for a random code with its n|C| en-
tries independent and uniformly distributed on X . Our PAS random code can thus be
interpreted as a partially systematic version of a uniformly distributed random code.
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10. Error Exponents

Remark 11. Note that we have not yet made use of the assumption that the channel is
memoryless, in particular, (10.37) also holds for channels with memory.

By inserting (10.37) in the outer expectation in (10.29) we have

E

{
n∏
i=1

q(aiSi, Yi)
−ρ
[∑
c∈X

1

|X |q(c, Yi)
]ρ∣∣∣∣∣An = an

}

=
n∏
i=1

E

{
q(aiSi, Yi)

−ρ
[∑
c∈X

1

|X |q(c, Yi)
]ρ∣∣∣∣∣Ai = ai

}
(10.38)

=
n∏
i=1

E

{
q(aiS, Y )−ρ

[∑
c∈X

1

|X |q(c, Y )

]ρ∣∣∣∣∣A = ai

}
(10.39)

=
∏
α∈A

E

{
q(αS, Y )−ρ

[∑
c∈X

1

|X |q(c, Y )

]ρ∣∣∣∣∣A = a

}N(α|an)

(10.40)

where

• equality in (10.38) follows because by assumption, the channel is memoryless, so
conditioned on An = an, SiYi and SjYj are independent for i 6= j,

• for the ith factor in (10.39), aiS pY |X Y ,

• for the αth factor in (10.40), αS pY |X Y ,

• in (10.40),

N(α|an) = |{i : an = α}| = number of occurrences of letter α in an. (10.41)

We denote the empirical distribution of an by PA and write N(α|an) = nPA(α). Evalu-
ating − 1

n
log2(·) in (10.40) gives

ẼPAS(ρ, PA, q) =
∑
a∈A

PA(a) log2 E

{[
q(aS, Y )∑

c∈X
1
|X |q(c, Y )

]ρ∣∣∣∣∣A = a

}
. (10.42)

The PAS error exponent and the bound on decoding error probability are respectively

EPAS(Rc, ρ, PA, q) = ẼPAS(ρ, PA, q)− ρRc (10.43)

Pr(Ŵ 6= W |An = an) ≤ 2−nEPAS(Rc,ρ,PA,q). (10.44)

10.1.3. PAS with Random Linear Coding

Suppose we have |X | = 2m, |A| = 2m−1, and |S| = 2, for instance, X may be a 2m-ASK
constellation. We represent A by a binary label b = b1 · · · bm−1 ∈ {0, 1}m−1 and S by

98



10.2. Shaping Layer

message
u0 = bnRccdmsγn

∈ {0, 1}nRccdm × Sγn
DM

index
w0 = ansγn

∈ An × Sγn
FEC

encoder
Cn(w0) = anSn

Channel
pY |X

decoded
message Û

inverse DM
decoded
index Ŵ

FEC
decoder

Y n

shaping layer FEC layer

random code C

Figure 10.4.: The PAS ensemble. The shaping layer is deterministic. The DM maps
nRccdm input bits to n symbols in A using a CCDM and it copies γn input
symbols in S unchanged to its output.

s ∈ {0, 1}. For this scenario, we next show that our results for PAS also hold for random
linear coding. This can be generalized to other scenarios in a straight forward manner.
For the considered scenario, the PAS random coding (10.26) is

w = bnsγn 7→ bnSn(w), w ∈ {0, 1}(m−1+γ)n (10.45)

where the entries of Sn(w), w ∈ {0, 1}(m−1+γ)n are independent and uniformly dis-
tributed on {0, 1}. We used two properties in our derivation:

1. In (10.11) and (10.31), we used that for w 6= w′, Sn(w) and Sn(w′) are indepen-
dent.

2. In (10.31), we used that for each w ∈ {0, 1}(m−1+γ)n, the n entries of Sn(w) are
independent and uniformly distributed on {0, 1}.

The results we derived apply for any coding experiment that fulfills properties 1. and 2.
In particular, consider the random linear coding

w = bnsγn 7→ (bn,wP ) (10.46)

where P is an (m − 1 + γ)n × n matrix with its entries independent and uniformly
distributed on {0, 1}. By Problem 10.2, the random linear code (10.46) fulfills properties
1. and 2. Thus, the PAS error exponent and the PAS achievable rate also hold for the
random linear coding (10.46).
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10.2. Shaping Layer

We display the full PAS scheme including the shaping layer in Figure 10.4. Our goal is
to associate a rate with the PAS error exponent. Recall that the code rate is

Rc = log2 |A|+ γ log2 |S|. (10.47)

The PAS error exponent EPAS(Rc, ρ, PA, q) depends on the type of the amplitude se-
quence an. Thus, the number of code words for which it holds is

(number of sequences an of type PA)× |S|γn. (10.48)

Using the CCDM we developed in Chapter 9, we can encode Rccdm(PA, n) · n bits to
length n sequences of type PA. In total, we can encode

[Rccdm(PA, n) + γ log2 |S|] · n bits (10.49)

and the rate is

Rtx = Rccdm(PA, n) + γ log2 |S|
[

bits

symbol

]
. (10.50)

Remark 12. We can express the code rate in terms of the transmission rate by

Rc = Rtx + [log2 |A| −Rccdm(PA, n)] . (10.51)

Note that since Rccdm(PA, n) < log2 |A|, the code rate is larger than the transmission
rate. This makes sense, since of all code words, we only transmit those that have
amplitude type PA.

The following theorem summarizes our findings.

Theorem 9. The PAS scheme can operate at the rate

Rtx = Rccdm(PA, n) + γ log2 |S|
[

bits

symbol

]
(10.52)

with the decoding error probability bounded from above by

2−EPAS(Rc,ρ,PA,q). (10.53)

10.3. PAS Achievable Rates

By making n large, the error probability bound approaches zero, as long as the error
exponent is positive, which is the case when ẼPAS(ρ, PA, q) is larger than ρRc.
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Figure 10.5.: Visualization of error exponent. By increasing the code rate Rc, the slope

of Rcρ becomes steeper, until it exceeds ẼPAS everywhere. The phase tran-
sition occurs for Rc = I(X;Y ) + D(A‖U) in ρ = 0.

Example 10.3. Consider an AWGN channel

Y = X + Z (10.54)

where X = A·S is 4-ASK input with alphabet X = {±1,±3}, amplitude distribution
PA(1) = 4

5
, PA(3) = 1

5
, uniform sign distribution PS(1) = PS(−1) = 1

2
and where

Z is zero mean Gaussian with variance σ2 = E(X2)/3, i.e., the SNR is 3 and the
AWGN channel capacity is 1

2
log2(1 + snr) = 1. For the decoding metric

q(a, b) = PX(a)pY |X(b|a). (10.55)

We plot ẼPAS(ρ) and ρRc in Figure 10.5. We make the following two observations:

• The function ẼPAS(ρ) is concave in ρ.

• ẼPAS(0) = 0.

This implies that the largest code rate is given by the slope of ẼPAS(ρ) in ρ = 0.

We now show that our observations in Example 10.3 are true in general. First,

ẼPAS(0) = 0 (10.56)
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follows directly by (10.42).

Theorem 10. ẼPAS(0) is concave for ρ ∈ R.

Proof. In 10.4, we show the non-negativity of the second derivative of a more general
expression, from which the concavity of ẼPAS(ρ) follows.

By (10.56) and the concavity of ẼPAS, it follows that for 0 ≤ ρ ≤ 1, the largest slope
of ẼPAS is in ρ = 0. To calculate the slope, define

Za =

{
log

q(Y, aS)∑
c∈X

1
|X |q(Y, c)

∣∣∣∣∣A = a

}
. (10.57)

We now have

ẼPAS(ρ, PA, q) =
∑
a∈A

PA(a) log2 E(eρZa) (10.58)

=
∑
a∈A

PA(a)
log[mgfZa(ρ)]

log 2
(10.59)

where mgf is the moment generating function (MGF) (B.7) and by Problem 10.1, we
have

∂

∂ρ
ẼPAS(ρ, PA, q)

∣∣∣∣
ρ=0

=
∑
a∈A

PA(a)
E(Za)

log 2
(10.60)

= E

[
log2

q(X, Y )∑
c∈X

1
|X |q(c, Y )

]
. (10.61)

Example 10.4. We continue with Example 10.3. For the decoding metric q(c, b) =
PX(c)pY |X(b|c), an achievable code rate is

Tc =
∂

∂ρ
ẼPAS(ρ, PA, q)

∣∣∣∣
ρ=0

(10.62)

= E

[
log2

PX(X)pY |X(Y |X)∑
c∈X

1
|X |PX(c)pY |X(b|c)

]
(10.63)

= I(X;Y ) + D(PX‖PU) (10.64)

where PU is the uniform distribution on X . By Theorem 8, for large n a CCDM
generates type PA sequences with rate Rccdm(PA,∞) = H(A). The rate is

Rtx = H(A) + γ = H(A) +Rc −m+ 1 (10.65)

= Rc − D(PX‖PU) (10.66)
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and the achievable rate is

R = Tc − D(PX‖PU) = I(X;Y ) (10.67)

i.e., PAS asymptotically achieves I(X;Y ).

10.4. Proof of Concavity of ẼPAS

Consider the function

g(x) = log

(
n∑
i=1

aib
x
i

)
= log

(
n∑
i=1

aie
x log bi

)
(10.68)

where the ai and bi are non-negative. We verify that g(x) is convex on R by showing
that the second derivative is non-negative. We have

∂

∂x
g(x) =

∑n
i=1 log(bi)aie

x log bi∑n
i=1 aie

x log bi
(10.69)

∂2

∂x2
g(x) =

(
∑n

i=1 log(bi)
2aie

x log bi)(
∑n

i=1 aie
x log bi)− (

∑n
i=1 log(bi)aie

x log bi)2

(
∑n

i=1 aie
x log bi)2

(10.70)

For i = 1, . . . , n, define

ui = log(bi)
√
aiex log bi (10.71)

vi =
√
aiex log bi . (10.72)

The numerator of the second derivative is now

uuTvvT − (uvT )2 (10.73)

which is non-negative, by the Cauchy-Schwarz inequality. The derivation above also
holds if the sum over i is replaced by an integral over some variable τ .

10.5. Problems

Problem 10.1.

1. Show that

∂

∂r
log[mgfX(r)]

∣∣∣∣
r=0

= E(X) (10.74)

∂2

∂r2
log[mgfX(r)]

∣∣∣∣
r=0

= Var(X) (10.75)

where mgfX is the MGF (B.7) of X.
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2. Use (10.59) and (10.75) to show that ẼPAS(ρ) is concave in ρ = 0.

Problem 10.2. Consider the random linear code (10.46).

1. Show that for w 6= w′, wP and w′P are independent.

2. Show that the n entries of wP are independent and uniformly distributed.
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11. Estimating Achievable Rates

In this chapter, we develop tools to estimate achievable rates for channels that potentially
have memory and for which we lack a complete analytical description.

11.1. Preliminaries

Let’s recall the main results on achievable code rates that we derived in Chapter 7:

• An input sequence xn can be recovered with high probability from an output
sequence yn by a rate Rc random code with decoding metric q, if n is large and

Rc < T̂c(x
n, yn, q) = log2 |X | −

1

n

n∑
i=1

[
− log2

q(xi, yi)∑
a∈X q(a, yi)

]
︸ ︷︷ ︸

uncertainty Uc

. (11.1)

• For a memoryless channel pY |X , a sequence approximately of type PX can be
recovered with high probability from the random channel output Y n by a rate Rc

random code with decoding metric q if n is large and

Rc < Tc(PX , pY |X , q) = log2 |X | − E
[
− log2

q(X, Y )∑
a∈X q(a, Y )

]
︸ ︷︷ ︸

uncertainty Uc

. (11.2)

The terms (11.1) and (11.2) are fundamentally different:

• (11.1) works for any channel, but the calculated value applies only to the specific
measurement xn, yn. In general, (11.1) tells us nothing about the code rate that
is achievable by a sequence x̃n different from xn. Consequently, we cannot attach
an achievable transmission rate to the achievable code rate T̂c(x

n, yn, q).

• (11.2) applies for memoryless channels and holds for any sequence xn of type PX .
Consequently, we can attach an achievable transmission rate to the achievable code
rate Tc(PX , pY |X , q).

In practice, we would like to combine the advantages of (11.1) and (11.2): for a not
necessarily memoryless channel, we would like to estimate an uncertainty that applies
for the whole shaping set, i.e., the set of sequences that our transmitter may output. A
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11. Estimating Achievable Rates

strategy to accomplish this is as follows. From a measurement xn, yn of a not necessarily
memoryless channel, we calculate the uncertainty estimate

Ûc =
1

n

n∑
i=1

[
− log2

q(xi, yi)∑
a∈X q(a, yi)

]
. (11.3)

From the uncertainty estimate, we calculate various achievable rates:

• Achievable code rate for sequence xn:

T̂c = log2 |X | − Ûc. (11.4)

• Achievable rate for ideal layered PS:

R̂ =
[
H(PX)− Ûc

]+

(11.5)

where PX is the type of the test sequence xn.

• Achievable rate

R̂ =
[
Rdm − Ûc

]+

(11.6)

where Rdm quantifies the size of the shaping set from which the test sequence xn

is chosen.

This is only meaningful, if the test sequence xn is representative for the shaping set, in
the sense that picking another test sequence from the same shaping set leads to a similar
uncertainty estimate. We discuss the choice of a representative test sequence in the next
section.

11.2. Estimating Uncertainty

Suppose we can transmit one input sequence xn over a channel and measure the result-
ing output sequence yn. Suppose further that we lack an analytical description of the
channel, in particular, the channel may have memory. Our task is to estimate the chan-
nel uncertainty when type PX code words are transmitted. The channel uncertainty can
then be used as a benchmark for code design. The actual block length of the designed
code may be longer or shorter than the length n of our measurement. This means that to
a large extend, our estimate should not depend on n. Furthermore, the estimate should
be representative for all sequences in the shaping set. The following three tests may be
used to detect possible dependencies:

T1. How does the estimate Ûc(x
j
1, y

j
1, q), j ≤ n depend on the length j?

T2. How does the estimate Ûc(x
j
j−w+1, y

j
j−w+1, q), w ≤ j ≤ n depend on window posi-

tion j and window size w?

T3. How do the outcomes of tests T1 and T2 depend on the test sequence xn?

To gain an intuition for good test sequences, we next consider T1, T2, and T3 for
memoryless AWGN.
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11.2. Estimating Uncertainty

11.2.1. High and Low SNR

Consider an AWGN channel with an ASK input alphabet X , a test sequence xn ∈ X n

and the decoding metric

q(x, y) = pY |X(y|x)PX(x). (11.7)

Low SNR

Suppose the SNR is very low. This means that pY |X(y|x1)/pY |X(y|x2) ≈ 1 for any pair
x1, x2 ∈ X and y ∈ R, so that the ith sample contributes to the uncertainty estimate by

− log2

[
pY |X(yi|xi)PX(xi)∑
a∈X pY |X(yi|a)PX(a)

]
= − log2

 PX(xi)∑
a∈X

pY |X(yi|a)

pY |X(yi|xi)PX(a)

 (11.8)

snr→0−−−→ − log2

[
PX(xi)∑
a∈X PX(a)

]
(11.9)

= − log2 PX(xi). (11.10)

See Problem 11.1. The limit (11.10) implies the following:

• If PX is uniform on X then PX(xi) = 1/|X | for all i = 1, 2, . . . , n and there is no
dependency on the number of samples and window size and position in tests T1.
and T2., respectively. The uncertainty estimate evaluates to log2 |X |.

• If PX is non-uniform, we may observe strong dependencies in tests T1. and T2.
See the next example.

Example 11.1 (8-ASK at −10 dB). We consider the 8-ASK constellation

X = {±1,±3,±5,±7} . (11.11)

Our test sequence xn has length n = 100 000 and type

n · PX(7) = n · PX(−7) = 2114

n · PX(5) = n · PX(−5) = 7189

n · PX(3) = n · PX(−3) = 16 255

n · PX(1) = n · PX(−1) = 24 442.

(11.12)

The test sequence xn is sorted by probabilities, i.e., the symbols appear in the order
−7, 7,−5, 5,−3, 3,−1, 1, e.g., the first 2114 entries of xn have the value −7 and the
last 24 442 entries are equal to 1. We sample a noise sequence zn at −10 dB SNR
and calculate yn = xn + zn.

In Figure 11.1, we display the results of tests T1 and T2 for window size w =
10 000. The uncertainty estimate depends heavily on j, because it decides on how
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T2: Ûc(x
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j−w+1, q), w = 10 000, sorted xn

T1: Ûc(x̃
j
1, ỹ

j
1, q), permuted x̃n

T2: Ûc(x̃
j
j−w+1, ỹ

j
j−w+1, q), w = 10 000, permuted x̃n

Figure 11.1.: Uncertainty estimates at −10 dB SNR. See Example 11.1 for explanations.

much the different symbols contribute to the estimate. We can use (11.10) to explain
the T2 curve. At the right, the window covers only -1s and 1s. By (11.10), the
uncertainty estimate is thus approximately

− log2 PX(−1) = − log2 PX(1) = − log2

24 442

100 000
≈ 2.0326 (11.13)

which corresponds very well to the displayed value.
Next, we generate a second test sequence x̃n by randomly permuting the entries

of the sorted sequence xn. Using the same noise as before, we calculate ỹn = x̃n+ zn

and repeat the tests. We observe in Figure 11.1 that for the permuted sequence x̃n,
there is almost no dependency on j. Note that for j = 100 000, the T1 estimate
of the sorted sequence coincides with the T1 and T2 estimates of the permuted
sequence.
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Figure 11.2.: Uncertainty estimates at 30 dB SNR. See Example 11.2 for explanations.

High SNR

In the high SNR limit, the ith sample xi, yi contributes to the uncertainty estimate by

− log2

pY |X(yi|xi)PX(xi)∑
a∈X pY |X(yi|a)PX(a)

= − log2

PX(xi)∑
a∈X

pY |X(yi|a)

pY |X(yi|xi)PX(a)
(11.14)

= − log2

PX(xi)

PX(xi) +
∑

a∈X\xi
pY |X(yi|a)

pY |X(yi|xi)PX(a)
(11.15)

snr→∞−−−−→ − log2

PX(xi)

PX(xi)
(11.16)

= 0. (11.17)

See also Problem 11.1. Thus, for high SNR, the AWGN channel uncertainty is 0 inde-
pendent of the test sequence. This means that in test T1., we do not see any dependency
of the uncertainty estimate on the number of samples, and in test T2., we see no depen-
dency on the window size and no dependency on the window position.

Example 11.2 (Example 11.1 continued). We consider the same setup as in Ex-
ample 11.1, now with a noise sequence sampled at 30 dB SNR. We display the
resulting uncertainty estimates in Figure 11.2. As predicted by (11.17), for both
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11. Estimating Achievable Rates

test sequences, the uncertainty estimates are close to zero, independent of j.

11.3. Estimating Uncertainty with Good Test Sequences

Our aim is to develop good test sequences that perform well under tests T1–T3, without
the issues we observed in Example 11.1. We start with two examples illustrating the
concept of good sequences.

Example 11.3. The sequence x8
1 = 00001111 has type Px8

1
(0) = Px8

1
(1) = 1/2 while

the sub-sequence x4
1 has type Px4

1
(0) = 1 − Px4

1
(1) = 1. We therefore say that x8

1 is
a bad sequence.

Example 11.4. Suppose we have PX(0) = 1−PX(1) = 1/3 and we estimate H(PX)
from a sequence xn by

Ĥj
` =

1

j − `+ 1

j∑
i=`

[− log2 PX(xi)]. (11.18)

For x9
1 = 000111111, we get

Ĥ9
1 = H(PX) ≈ 0.9183. (11.19)

and

Ĥ3
1 = log2 3 ≈ 1.5850 > H(PX) (11.20)

Ĥ6
4 = Ĥ9

7 = log2

3

2
≈ 0.5850 < H(PX) (11.21)

and we conclude that x9
1 is a bad sequence. Using x̃9

1 = 001100010 yields

Ĥ3
1 = Ĥ6

4 = Ĥ9
7 = H(PX) (11.22)

and we therefore call x̃9
1 a good sequence. We have achieved this by putting a

restriction on x̃n: we divide x̃n into three chunks, each of three bits, and require
that each chunk is of type PX . This makes our estimates less dependent on the
considered sub-sequence.

Note that we reduce the number of strings that we can choose from. For the
bad sequence, we have

(
9
3

)
= 84 options, while for the good sequence, we have only(

3
1

)3
= 27 options. This restriction will reduce the achievable rate that we can attach

to uncertainty estimates.

We define a good test sequence as follows:
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T2: Ûc(x̃
jv
jv−w+1, ỹ
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Figure 11.3.: Uncertainty estimates at −10 dB SNR using good test sequences. See Ex-
ample 11.5 for explanations. Figure 11.1 shows the corresponding estimates
for bad sequences.

• xn = xv1x
2v
v+1 · · ·xnn−v+1 where

– Each chunk xjv(j−1)v+1, j = 1, 2, . . . , n/v is of type PX .

– The chunk length v is large enough so that the rate loss H(PX)− log2 |T v(PX)|
v

is small (see Section 9.2.1 for a detailed discussion of rate loss).

To check if the estimate is unlikely to apply for the whole shaping set, we perform the
following tests.

T1. Calculate and plot Ûc(x
jv
1 , y

jv
1 , q), j = 1, 2, . . . , n/v.

T2. Calculate and plot Ûc(x
jv
jv−w+1, y

jv
jv−w+1, q), w/v ≤ j ≤ n/v and w an integer

multiple of v.

T3. Do T1 and T2 for two different good test sequences.
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11. Estimating Achievable Rates

Example 11.5 (Example 11.1 continued). We choose v = 2500 and

w · PX(7) = w · PX(−7) = 54

w · PX(5) = w · PX(−5) = 180

w · PX(3) = w · PX(−3) = 406

w · PX(1) = w · PX(−1) = 611.

(11.23)

Note that (11.23) quantizes (11.12), see Section 9.3 for details. We use the same
window size w = 10 000 as in examples 11.1 and 11.2. For each j = w/v, . . . , n/v,
the subsequence xjvjv−w+1 covers w/v = 4 chunks, each of type PX . For the sorted
sequence, we sort the symbols in each chunk by increasing probability as in Exam-
ple 11.1. For the permuted sequence, we choose for each chunk an individual random
permutation. The resulting uncertainty estimates are displayed in Figure 11.3. In
comparison to Figure 11.1, we notice that using good sequences has drastically re-
duced the dependency of the estimates on j and the considered sequence (sorted vs.
permuted).

11.4. Calculating Achievable Rate Estimates

The uncertainty Uc has the following interpretation: from the observation at the decoder,
we can infer a subset Ŵ ⊂ X n of size |Ŵ| = 2nUc that very likely contains the sequence
that was actually transmitted. Thus, the FEC code should partition X n into disjoint
partitions of size |Ŵ| = 2nUc that each contain one code word. This corresponds to the
achievable code rate

Tc = log2

|X |n
2nUc

= log2 |X | − Uc. (11.24)

The transmitter encodes now into the shaping set containing concatenations of n/v
chunks, each of type PX . That is, only the fraction |T v(PX)|nv /|X |n of sequences is
used. An achievable rate is therefore

Rtx =

[
log2

( |T v(PX)|nv
|X |n

|X |n
2nUc

)]+

=

[
log2 |T v(PX)|

v
− Uc

]+

. (11.25)

A similar derivation for PAS achievable rates is discussed Problem 11.2.

11.5. Problems

Problem 11.1. Consider an 8-ASK constellation X = {±1,±3,±5,±7}. Suppose the
input power is fixed to P, the noise variance is σ2 so that the SNR is snr = P/σ2. The
conditional output distribution of an AWGN channel is

pY |X(y|a) =
1√

2πσ2
exp

[
−(y − a)2

2σ2

]
, a ∈ X . (11.26)
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11.5. Problems

1. Show the limit in (11.17) explicitly by considering the limit σ2 → 0.

2. Show the limit in (11.10) explicitly by considering the limit σ2 →∞.

Problem 11.2. Derive an achievable rate for PAS following the procedure described in
Section 11.4. Assume the set of permissible sequences is the set of (amplitude,sign) pairs
T n(PA)× {−1, 1}n where PA is a distribution on ASK amplitudes.
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A. Mathematical Background

Cauchy-Schwarz Inequality

For two row vectors u,v ∈ RM , the Cauchy-Schwarz inequality is

uuTvvT − (uvT ) ≥ 0 (A.1)

with equality if and only if u and v are linearly dependent.

Big O Notation

• f is bounded below by g asymptotically:

f ∈ Ω(g)⇔ lim inf
n→∞

∣∣∣∣f(n)

g(n)

∣∣∣∣ > 0. (A.2)

• f is bounded above by g asymptotically:

f ∈ O(g)⇔ lim inf
n→∞

∣∣∣∣f(n)

g(n)

∣∣∣∣ <∞. (A.3)

• f is bounded above and below by g asymptotically:

f ∈ Θ(g)⇔ f ∈ Ω(g) and f ∈ O(g). (A.4)

Stirling’s Formula

By [32, Section II.9],
√

2πnn+ 1
2 e−ne

1
12n+1 < n! <

√
2πnn+ 1

2 e−ne
1

12n . (A.5)

Convexity

• A real-valued function f is convex on the interval [A,B] ⊆ R if for each x1, x2 ∈
[A,B] and 0 ≤ λ ≤ 1, we have

f [λx1 + (1− λ)x2] ≤ λf(x1) + (1− λ)f(x2).

• The function f is concave on [A,B] if −f is convex on [A,B].

• Let X be a random variable with support [A,B]. Jensen’s inequality states that
for f convex on [A,B], we have

f [E(X)] ≤ E[f(X)]. (A.6)

For f concave on [A,B], Jensen’s inequality states that

f [E(X)] ≥ E[f(X)]. (A.7)

115



A. Mathematical Background

Sum-of-Products and Product-of-Sums

Consider m sets X1,X2, . . . ,Xm. The Cartesian product of the m sets is the set of ordered
m tuples

X1 ×X2 × · · · × Xm = {a = (a1, a2, . . . , am)|ai ∈ Xi, i = 1, 2, . . . ,m}. (A.8)

We now have the following sum-of-products as product-of-sums identity:

∑
a∈X1×···Xm

m∏
j=1

aj =
m∏
j=1

∑
a∈Xj

a. (A.9)

Example A.1. Consider

m = 2, X1 = {b, c}, X2 = {d, e, f}.

We have

∑
a∈X1×X2

2∏
j=1

aj = bd+ be+ bf + cd+ ce+ cf

2∏
j=1

∑
a∈Xj

= (b+ c)(d+ e+ f) = bd+ be+ bf + cd+ ce+ cf.

Example A.2. We often encounter the case when Xj is the set of probabilities
defined by a distribution PXj on an alphabet X , i.e.,

Xj = {PXj(a)|a ∈ X}.

In particular, the sets Xj are all of the same size, i.e., |X1| = |X2| = · · · = |Xm| = |X |.
The Cartesian product of m copies of X is

Xm = X × X × · · · × X︸ ︷︷ ︸
m times

116



The sum-of-products as product-of-sums identity can now be written as

∑
p∈X1×···Xm

m∏
j=1

pj =
∑

a∈Xm

m∏
j=1

PXj(aj)

=
m∏
j=1

∑
a∈X

PXj(a).
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B. Probability

• Probability density function (pdf) pX :

Pr(X ≤ x) =

∫ x

−∞
pX(τ)dτ. (B.1)

• Bayes’ Rule:

pXY (xy) = pX(x)pY |X(y|x). (B.2)

• Independence:

X and Y are independent ⇔ pXY (xy) = pX(x)pY (y), ∀x, y. (B.3)

• Expectation for a real-valued function f :

E[f(X)] =

∫ ∞
−∞

pX(x)f(x)dx. (B.4)

• Law of total probability: Let A be some event and let X be a random variable.

Pr(A) = E[Pr(A|X)] (B.5)

where Pr(A|X) is a random variable with realizations Pr(A|X = x).

• Markov’s inequality, [19, Section 1.6.1]: Let X be a non-negative random
variable, i.e., Pr(X < 0) = 0. Then for a > 0

Pr(X ≥ a) ≤ E(X)

a
. (B.6)

• Moments: Real-valued random variable X, positive integer k.

mgfX(r) = E(erX) (B.7)

∂k

∂rk
mgfX(r)

∣∣∣∣
r=0

= E(Xk). (B.8)

mgfX(r) is the moment generating function (MGF) of X and E(Xk) is the kth
moment of X.
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C. Information Theory

C.1. Types and Typical Sequences

Types Consider a sequence xn = x1x2 · · ·xn with entries in a finite alphabet X . Let
N(a|xn) be the number of times letter a ∈ X occurs in xn, i.e.,

N(a|xn) =
∣∣∣{i ∈ {1, 2, . . . , n} : xi = a

}∣∣∣ , a ∈ X . (C.1)

The empirical distribution of xn is

Pxn(a) =
N(a|xn)

n
, a ∈ X . (C.2)

Since every permutation of xn has the same empirical distribution, we define na =
N(a|xn) and write

PX(a) =
na
n
, a ∈ X . (C.3)

Note that every probability PX(a), a ∈ X , is an integer multiple of 1/n. The distribution
PX is therefore called an n-type. The set of all length n sequences with empirical
distribution PX is called the type class of the n-type PX and denoted by T n(PX).

Typical Sequences We use letter-typical sequences as defined in [22, Sec. 1.3]. Consider
a distribution PX on a finite alphabet X . For xn ∈ X n. We say xn is ε-letter-typical
with respect to PX if for each letter a ∈ X ,

(1− ε)PX(a) ≤ N(a|xn)

n
≤ (1 + ε)PX(a), ∀a ∈ X . (C.4)

Let T nε (PX) be the set of all sequences xn that fulfill (C.4). The sequences (C.4) are
called typical in [33, Sec. 3.3],[34, Sec. 2.4] and robust typical in [23, Appendix].

C.2. Differential Entropy

• Differential entropy:

h(X) := E[− log2 pX(X)]. (C.5)
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• Scaling for real-valued X:

h(aX) = h(X) + log2 |a|. (C.6)

• Translation:

h(X + b) = h(X). (C.7)

• Conditional differential entropy:

h(Y |X) := E[− log2 pY |X(Y |X)]. (C.8)

• Function of variables:

h
[
Y + f(X)

∣∣X] = h(Y |X). (C.9)

• Chain rule:

h(X, Y ) = h(X) + h(Y |X) = h(Y ) + h(X|Y ). (C.10)

• Conditioning does not increase entropy:

h(X) ≥ h(X|Y ). (C.11)

• Independence bound:

h(X, Y ) ≤ h(X) + h(Y ). (C.12)

C.3. Entropy

Random variable X with distribution PX on finite set X .

• Entropy:

H(PX) = H(X) := E[− log2 PX(X)]. (C.13)

• Conditional Entropy:

H(PX|Y |PY ) = H(X|Y ) := E[− log2 PX|Y (X|Y )]. (C.14)

• Conditioning does not increase entropy: We have

H(X) ≥ H(X|Y ) (C.15)

with equality if and only if X and Y are stochastically independent.
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C.4. Informational Divergence

• Function of variables: Let f, g be functions. Then

H(X|Y ) = H(X, f(X, Y )|Y, g(Y )). (C.16)

• Relation to differential entropy: Properties (C.10), (C.11), and (C.12) also
hold for entropy.

• Binary entropy function: 0 ≤ p ≤ 1.

H2(p) := −p log2 p− (1− p) log2(1− p). (C.17)

• Fano’s Inequality: Random variable X with distribution PX on X . Decision X̂,
joint distribution PXX̂ , error probability Pe = Pr(X 6= X̂).

H2(Pe) + Pe log2(|X | − 1) ≥ H(X|X̂). (C.18)

• Continuity: Distributions PX , PX′ on finite set X . Suppose ‖PX−PX′‖1 = δ ≤ 1
2
.

Then

|H(PX)−H(PX′)| ≤ −δ log2

δ

|X | . (C.19)

C.4. Informational Divergence

• Informational divergence:

D(pX‖pY ) := E
[
log2

pX(X)

pY (X)

]
(C.20)

• Information inequality:

D(pX‖pY ) ≥ 0 (C.21)

with equality if and only if pX = pY .

• Asymmetric: in general, we have

D(pX‖pY ) 6= D(pY ‖pX). (C.22)

• Conditional informational divergence:

D(pY1|X1‖pY2|X2 |pX1) := E
[
log2

pY1|X1(Y1|X1)

pY2|X2(Y1|X1)

]
. (C.23)

• Chain rule:

D(pX1Y1‖pX2Y2) = D(pX1‖pX2) + D(pY1|X1‖pY2|X2|pX1) (C.24)

= D(pY1‖pY2) + D(pX1|Y1‖pX2|Y2|pY1). (C.25)

• Discrete random variables: All properties of the informational divergence
stated above also hold for discrete random variables; replace densities, e.g., pX , by
distributions, e.g., PX . The properties also hold for mixed random variables, e.g.,
if X = XcXd ∼ pXcPXd , replace pX by pXcPXd .
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C.5. Mutual Information

• Mutual Information:

– X, Y continuous:

I(X;Y ) := D(pXY ‖pXpY ) (C.26)

= D(pY |X‖pY |pX) (C.27)

= D(pX|Y ‖pX |pY ) (C.28)

= h(Y )− h(Y |X) (C.29)

= h(X)− h(X|Y ). (C.30)

– X discrete, Y continuous:

I(X;Y ) := D(PXpY |X‖PXpY ) (C.31)

= D(PX|Y ‖PX |pY ) (C.32)

= D(pY |X‖pY |PX) (C.33)

= h(Y )− h(Y |X) (C.34)

= H(X)−H(X|Y ). (C.35)

- Other combinations of discrete/continuous accordingly.

• Independence Test:

X and Y are independent ⇔ I(X;Y ) = 0. (C.36)

• Non-Negative:

I(X;Y ) ≥ 0. (C.37)

• X, Y, Z form a Markov chain if X and Z are independent conditioned on Y , i.e.,

X ◦ Y ◦ Z ⇔ I(X;Z|Y ) = 0. (C.38)

• If X = f(Y ), then X ◦ Y ◦ Z

• Chain Rule:

I(XZ;Y ) = I(Z;Y ) + I(X;Y |Z). (C.39)

• Function of variables: Let f , g, r be functions. Then

I(X, f(X,Z);Y, g(Y, Z)|Z, r(Z)) = I(X;Y |Z). (C.40)

• Data Processing Inequality: Suppose X ◦ Y ◦ Z. Then

I(X;Y ) ≥ I(X;Z)

I(Y ;Z) ≥ I(X;Z).
(C.41)
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[18] G. Böcherer, “Capacity-achieving probabilistic shaping for noisy and noiseless
channels,” PhD thesis, RWTH Aachen University, 2012. [Online]. Available: http:
//www.georg-boecherer.de/capacityAchievingShaping.pdf.

[19] R. G. Gallager, Stochastic processes: theory for applications. Cambridge University
Press, 2013.

[20] G. Kaplan and S. Shamai (Shitz), “Information rates and error exponents of com-
pound channels with application to antipodal signaling in a fading environment,”
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[28] P. Schulte and G. Böcherer, “Constant composition distribution matching,” IEEE
Trans. Inf. Theory, vol. 62, no. 1, pp. 430–434, Jan. 2016.

[29] P. Schulte and B. Geiger, “Divergence scaling of fixed-length, binary-output, one-
to-one distribution matching,” in Proc. IEEE Int. Symp. Inf. Theory (ISIT),
Aachen, Germany, Jun. 2017, pp. 3075–3079.

[30] T. V. Ramabadran, “A coding scheme for m-out-of-n codes,” IEEE Trans. Com-
mun., vol. 38, no. 8, pp. 1156–1163, Aug. 1990.

126

http://www.georg-boecherer.de/capacityAchievingShaping.pdf
http://www.georg-boecherer.de/capacityAchievingShaping.pdf
http://arxiv.org/abs/1410.8075


Bibliography
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Acronyms

ASK amplitude shift keying

AWGN additive white Gaussian noise

BICM bit-interleaved coded modulation

BMD bit-metric decoding

BPSK binary phase shift keying

CCDM constant composition distribution matcher

DFT discrete Fourier transform

DM distribution matcher

DMS discrete memoryless source

FEC forward error correction

GMI generalized mutual information

iid independent and identically distributed

LDPC low-density parity-check

LUT look-up table

MB Maxwell-Boltzmann

MGF moment generating function

PAS probabilistic amplitude shaping

pdf probability density function

PS probabilistic shaping

QAM quadrature amplitude modulation

SNR signal-to-noise ratio

WLLN weak law of large numbers
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Index

achievable, 15
achievable code rate, 60
additive white Gaussian noise, 16
amplitude shift keying, 14, 98, 107
amplitude-sign factorization, 44
ASK see amplitude shift keying 14, 98,

107
average power, 13
AWGN see additive white Gaussian noise

16, 19
AWGN Capacity, 21

bad sequence, 110
BICM see bit-interleaved coded modula-

tion 74
binary interface, 15
binary phase shift keying, 14, 57, 75
bipolar amplitude shift keying see ampli-

tude shift keying 14
bisection method, 39
bit-interleaved coded modulation, 74
bit-metric decoding, 73
Blahut-Arimoto Algorithm, 38
block error probability, 12
block length, 11
block-based transmission, 11
BMD see bit-metric decoding 73
BPSK see binary phase shift keying 14,

57, 75

capacity, 15
capacity-power function, 21
Cauchy-Schwarz inequality, 41, 103, 115
CCDM see constant composition distri-

bution matcher 43, 50, 84

channel coding converse, 16
code rate, 55, 91
concave, 115
constant composition code, 84
constant composition distribution matcher,

43, 50, 84
convergence in probability, 63
convex, 115
convolution, 26
C(P/σ2) see capacity-power function 21

data processing inequality, 17, 28, 32
dB see decibel 21
decibel, 21
decoding error probability, 56, 92
decoding metric, 20, 55, 91
delay, 12
DFT see discrete Fourier transform 52
discrete Fourier transform, 52
discrete memoryless source, 46
discrete-time channel, 55, 91
distribution matcher, 50
distribution matching, 83
DM see distribution matcher 50
DMS see discrete memoryless source 46

ε-letter-typical, 121
empirical distribution, 83
entropy, 61

Fano’s inequality, 17
fixed-to-fixed length, 84

generalized mutual information, 77
generator matrix, 44
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Index

GMI see generalized mutual information
77

good sequence, 110

Hamming metric, 78
hard-decision decoding, 78

iid see independent and identically dis-
tributed 20

independent and identically distributed,
20

information inequality, 22, 32, 35
integers, 19
interleaved coded modulation, 74

Jensen’s inequality, 93, 115

L-value, 58
LDPC code see low-density parity-check

code 58
letter-typical, 121
LM-Rate, 78
low-density parity-check code, 58

Markov chain, 32
Markov’s inequality, 60, 93
Maxwell-Boltzmann distribution, 37, 39
MB distributionsee Maxwell-Boltzmann

distribution 37
measure concentration, 61
message, 12
message bit, 21
mismatch, 20
moment generating function, 102, 103
multinomial coefficient, 85

n-type see type 121

parity forming part, 45
PAS see probabilistic amplitude shaping

43, 46, 94, 95, 98, 113
pdf see probability density function 20
Pe see block error probability 12
peak power, 13
per-block power, 13
power, 12

probabilistic amplitude shaping, 43, 46,
94, 95, 98, 113

probability density function, 20
PX♣ , 39

QAM see quadrature amplitude modu-
lation 95

quadrature amplitude modulation, 95

random coding, 55
random linear code, 98
random linear coding, 99
rate, 12
relative frequency, 60, 61
reliability, 12
robust typical, 121

sampled Gaussian distribution, 39
scrambling sequence, 58
shaping gap, 28
signal-to-noise-ratio, 21
SNR see signal-to-noise-ratio 21
source/channel separation, 15
Stirling’s formula, 88, 115
systematic binary encoding, 44
systematic encoding, 95

type, 83, 107, 121
type class, 83, 121
typical, 64, 67, 121

uncertainty, 56, 62
uniform check bit assumption, 45

weak law of large numbers, 60, 63
WLLN see weak law of large numbers 60,

63

X♣, 39

Z see integers 19
Z-channel, 82
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