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Constellation, FEC, and Shaping Design for Optical
Communications

I At the receiver side, forward error correction (FEC) must
remove the residual impairments after the DSP.

I The residual impairments are modelled reasonably well as
additive Gaussian noise.

I The design of constellation, FEC, and shaping is done
assuming additive white Gaussian noise (AWGN).



AWGN Capacity

I Real-valued zero mean Gaussian noise Z with variance σ2.

I Average input power E[X 2] ≤ E .

I SNR = E
σ2 .

I AWGN capacity 0.5 log2(1 + SNR).

I E[·] is the expectation operator.



Constrained AWGN Capacity

I Finite alphabet X (e.g., 4-ASK: X = {±1,±3}).

I Input distribution PX on X .

I Constrained capacity

max
PX ,∆

I(X ; ∆X + Z )

subject to E[(X∆)2] ≤ E

I I(X ;Y ) is the mutual information of X and Y .



Design Problem
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Design Problem

I We want to achieve a target spectral efficiency at the lowest
possible SNR.

I Reformulation of the constrained capacity:

min
PX ,∆

E[(X∆)2]

subject to I(X ; ∆X + Z ) ≥ SE

I Topic of this talk: how to achieve it in practice.
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Approach

FEC
Bit-

Mapper

Channel

k bits nm bits n symbols xn

I FEC fixed and given.

I Shaping requirement: xn ∈ S for shaping set S.



Shaping Set Example

I Input distribution PX .

I Shaping set S contains all length n sequences in X n that have
approximately distribution PX .

I Known as typical set, type class T n(PX ).



PS Encoder

PS
Encoder

FEC
Encoder

Bit-
Mapper

Channel

SE · n bits k bits nm bits n symbols xn

1. Identify FEC encoder inputs that map to sequences xn ∈ S.

2. Let PS encoder index valid FEC encoder inputs.



PS Encoder

PS
Encoder

FEC
Encoder

Bit-
Mapper

Channel

SE · n bits k bits nm bits n symbols xn

component rate

Bit-mapper m [bits/symbol]

FEC encoder Rfec = k
mn

PS encoder Rps = SE·n
k

I Spectral efficiency is SE = Rps · Rfec ·m.

I PS rate Rps depends on FEC rate Rfec.

I PS rate depends implicitly on shaping set S.
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Shaping Set Rate Rss

Rss =
log2 |S|
nm



Shaping Set Rate: Examples

I No shaping:

Rss =
log2 |S|
nm

=
log2 |X |n

nm
=

m

m
= 1.

I PX -type class (n large):

Rss =
H(PX )

m
.

I PX -type class (n not so large)1

Rss =
log2

( n
n1,n2,...,n|X|

)
mn

, ni = n · PX (xi ).

I H(PX ) = H(X ) is the entropy of X .

1Encoding into type classes can be done efficiently by Constant
Composition Distribution Matching (CCDM) [1].



Shaping Set Rate: More Examples

I Consider 1D 4-ASK constellation

X = {±1,±3}.

I Shaping set:
I Constrain amplitude to distribution

PA(1) =
n1

n
, PA(3) =

n3

n
.

I Leave sign unconstrained.

I Shaping set rate is

Rss =
log2 |S|
nm

=
log2

[( n
n1,n3

)
· 2n
]

nm
=

log2

( n
n1,n3

)
nm

+
1

m
.



Spectral Efficiency

SE ≤
[

log2 |S|
n

−m(1− Rfec)

]+

= m · [1− (1− Rss)− (1− Rfec)]+

= m · [Rss + Rfec − 1]+ = mRpsRfec

PS and FEC are separated!!

I With “=” if there are at least m(1− Rfec) unconstrained
bit [2].

I With “=” asymptotically in n in general [3], [4].



Rate, Redundancy, Overhead

FEC Shaping Set

Rate Rfec = k
nm Rss = log2 |S|

nm

Redundancy 1− Rfec 1− Rss

Overhead in % 100 ·
(

1
Rfec
− 1
)

100 ·
(

1
Rss
− 1
)

Total overhead in % 100 ·
(

1
Rss+Rfec−1 − 1

)
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Textbook Information Theory

I Code

C =
{
xn(1), xn(2), . . . , xn(2SEn)

}
with codeword entries iid ∼ PX .

I ML rule

ŵ = argmax
w∈{1,...,2SEn}

Pn
Y |X (yn|xn(w))

I Vanishing error probability for large n if

SE < I(X ;Y ).



Layered Probabilistic Shaping (Decoding)

I Code

C =
{
xn(1), xn(2), . . . , xn(2Rfecmn)

}
with codeword entries iid uniform. NB: Rfecm > SE.

I MAP rule

ŵ = argmax
w∈{1,...,2Rfecmn}

Pn
X |Y (xn(w)|yn)

I [3, Theorem 2]: Vanishing error probability for large n if

m(1− Rfec) > H(X |Y ).



Layered Probabilistic Shaping (Encoding)

I Divide the codebook into 2SEn partitions.

I Map message w to a codeword in C ∩ S in the w th partition.

I If no such codeword exists, declare an encoding error.

I [3, Theorem 1]: Vanishing error probability for large n if

SE <
log2 |S|

n
−m(1− Rfec).



Layered Probabilistic Shaping: Achievable SE

We have

I(X ;Y ) = H(X )−H(X |Y )

≥ [H(X )−m(1− Rfec)]+

≥
[

log2 |S|
n

−m(1− Rfec)

]+

I By the two theorems above, we can approach equality for
large n.

⇒ Layered probabilistic shaping is capacity-achieving.



Practical Decoding Metrics

I Practical systems use a sub-optimal decoding metric q(x , y)
instead of PX |Y (x |y).

I The decoding rule becomes

ŵ = argmax
w∈{1,...,2Rfecmn}

qn(xn(w), yn).

I Achievable FEC rate generalizes to

m(1− Rfec) ≥ E
[
− log2

q(X ,Y )∑
a∈X q(a,Y )

]
= U(q,X ,Y ) ≥ H(X |Y )

I U(q,X ,Y ) is the uncertainty at the receiver about the input,
which needs to be resolved by the FEC decoder.



Uncertainty Examples

U(q,X ,Y )

non-binary soft-decision FEC H(X |Y )
binary soft-decision FEC

∑m
i=1 H(Bi |Y )

binary hard-decision FEC mH2(ε)

I B1B2 . . .Bm, Bi ∈ {0, 1}, is the m-bit binary label of X used by the
bit-mapper.

I H2(ε) = −ε log2 ε− (1− ε) log2(1− ε) is the binary entropy function.

I ε is the BER at the FEC decoder input.



Summary

I We can exactly quantify FEC, PS, and decoding metric
penalties (assume SE > 0)

SE = m [Rss − (1− Rfec)]

= mRss − U(q,X ,Y )−m∆FEC

= H(X )− U(q,X ,Y )−m∆FEC −m∆PS

= H(X )−H(X |Y )︸ ︷︷ ︸
I(X ;Y )

−m∆FEC −m∆PS −m∆decoding metric

I Textbook information theory:

SE ≤ I(X ;Y ).

(Mutual information is generalized to arbitrary decoding
metrics in [5]).



Conclusions

Discussed topics

I Layered probabilistic shaping architecture.

I Spectral efficiency, rate, overhead.

I Information theory for component-wise benchmarking.

Outlook

I Use presented framework to design better systems.
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