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1. Introduction

In recent years, we could observe very active academic and industrial research on using
machine learning for the design and implementation of communication systems, and ma-
chine learning techniques are becoming a common tool for communications engineering.
For example, Sionna was released recently [1], [2], an open-source Python library for
link-level simulations of digital communication systems built on top of the open-source
software library TensorFlow for machine learning.

These notes aim to provide an entrance into the field of machine learning for commu-
nication system design. In following, we provide a rough definition of what “machine
learning” and “communications” may stand for in these notes.

1.1. Machine Learning

We consider a specific subfield of machine learning

� Machine learning

– ...the machine is an (artificial) neural network (NN)

* ...the NN is realized by a publicly available software package

· ...the NN is trained by supervised learning.

There are several software packages that could serve our purpose, some of which are
listed in the following table.

package company programming language open source

tensorflow Google python/C++/CUDA yes
pytorch Facebook python/C++/CUDA yes

paddlepaddle Baidu python/... yes

These software packages are all the result of a company-driven effort to develop frame-
works for scalable and fast prototyping, training, and deployment of neural networks.
We keep most of the material in these notes independent of a specific software package.
However, in some examples and problems, we explicitly refer to pytorch.

Within the machine learning subfield we specified above, we may define machine learn-
ing mathematically as follows:

1. The objective is to realize a function

f : x 7→ f(x) = y (1.1)
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minimizing some loss function

` : (y, t) 7→ `(y, t). (1.2)

where t is the target outcome.

2. The approach is to use data for learning f .

Example 1.1 (Learning from Data).

� Input samples xn = x0x1 . . . xn−1

� Target output samples tn = t0t1 . . . tn−1

� Mean square error (MSE) loss function

`mse(y, t) = |y − t|2. (1.3)

� Find f that minimizes cost:

f∗ = arg min
f

1

n

n−1∑

i=0

|f(xi)− ti|2 (1.4)

You may wonder, what is the big deal about Example 1.1? In the end, classic textbooks
on communications also use the MSE design criterion! If you look closely, you will
note that most classic textbooks focus on linear functions, see, e.g., [3]. In this regard,
Example 1.1 is radically different, as optimization is over a general function! E.g., for
real-valued functions on the reals, this includes all linear functions, all polynomials, all
trigonometric functions like sin, cos, the exponential function, etc. As we will see, NNs
can represent almost any function, in particular, non-linear functions.

In summary, the paradigm shift is from parametric models to non-parametric mod-
els and designing functions using machine learning allows us to put focus on

1. Identifying the input/output (I/O) interface.

2. Identifying the appropriate loss for the task at hand.

The promise is that machine learning takes care of the rest, at least most of the time.

1.2. Communications

According to Claude Elwood Shannon [4]

“The fundamental problem of communication is that of reproducing at one
point either exactly or approximately a message selected at another point.”

9



The following diagram shows the three main components of a communication system.

message Transmitter Channel Receiver massage

In these notes, we specify the different parts of a communication system via data, i.e.,
samples taken at specific points in the system.

We treat the different parts in the system successively.

� At the receiver we focus on the problem of detecting symbols and bits from noisy
samples, using machine learning techniques commonly called classification.

� At the transmitter, we let the machine learn message representation insusceptible
to channel impairments; an important concept from machine learning that we apply
here is the autoencoder.

� For training transmitter components, we need to emulate the channel, and we use
generative modeling techniques to achieve this.
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1.3. Further Reading

A textbook on machine learning suitable for these notes is [5]. The textbook [6] provides
a good introduction to the design of digital communication systems.

References

[1] J. Hoydis, S. Cammerer, F. Ait Aoudia, A. Vem, N. Binder, G. Marcus, and
A. Keller, “Sionna: An open-source library for next-generation physical layer re-
search,” arXiv preprint, 2022.

[2] Sionna: An open-source library for next-generation physical layer research. [On-
line]. Available: https://github.com/NVlabs/sionna.

[3] T. Kailath, A. H. Sayed, and B. Hassibi, Linear estimation. Prentice Hall, 2000.

[4] C. E. Shannon, “A mathematical theory of communication,” Bell Syst. Tech. J.,
vol. 27, 379–423 and 623–656, 1948.
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2. Probability and Information

Cross entropy is a loss function widely used in machine learning. In this chapter, we sum-
marize the most important information measures and their properties, which serves us
as a foundation for later chapters, where we relate objectives relevant for communication
system design to the cross entropy loss.

2.1. Probabilistic Expectation

� Random variable X with distribution PX on alphabet X

� Real-valued function f : X → R

� Probabilisitc expectation

E[f(X)] :=
∑

a∈X
PX(a)f(a). (2.1)

� Most important for us is the empirical expectation. For n samples from PX ,

1

n

n−1∑

i=1

f(xi) ≈ E[f(X)]. (2.2)

Example 2.1.

In [21]: pX = [0.5, 0.5]

In [22]: x = np.random.choice([-1, 1], 1000000, p=pX)

5 In [23]: np.mean(x)
Out[23]: 0.000152

In [24]: np.dot(pX, [-1, 1])
Out[24]: 0.0

2.2. Entropy

� Random variable X, distribution PX on alphabet X .
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� The entropy of X in bits is

H(X) = H(PX) =
∑

a∈X
PX(a)[− log2 PX(a)] (2.3)

= E[− log2 PX(X)] (2.4)

≈ − 1

n

n∑

i=1

log2 PX(xi). (2.5)

� The entropy is bounded by

0 ≤ H(X) ≤ log2 |X |. (2.6)

2.3. Conditional Entropy (“Equivocation”)

� Two random variable X and Y with joint distribution PXY on X × Y.

� Bayes’ rule:

PXY (ab) = PX|Y (a|b)PY (b). (2.7)

– PY is a distribution on Y.

– For each b ∈ Y, PX|Y (·|b) is a distribution on X .

� Conditional entropy

H(X|Y ) =
∑

a∈X

∑

b∈Y
PXY (ab)[− log2 PX|Y (a|b)] (2.8)

= E[− log2 PX|Y (X|Y )] (2.9)

≈ − 1

n

n−1∑

i=0

log2 PX|Y (xi|yi) (2.10)

where xn, yn are sampled from PXY .

2.4. Mutual Information

message Transmitter Channel Receiver massageB X Y B̂

� Mutual information of X and Y is

I(X;Y ) = H(X)−H(X|Y ). (2.11)

� Mutual information I(X;Y ) quantifies the rate at which we can reliably transmit
over the channel.
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� The data processing inequality relates I(B; B̂) and I(X;Y ):

I(B; B̂) ≤ I(X; B̂) ≤ I(X;Y ). (2.12)

⇒ Large I(X;Y ) is a requirement for large reliable rate from B to B̂.

2.5. Importance of Equivocation

message Transmitter Channel Receiver massageB X Y B̂

� Since X is emitted by the transmitter, we usually have full control of H(X).

� Large I(X;Y ) = H(X)−H(X|Y ) therefore corresponds to small H(X|Y ).

⇒ The equivocation H(X|Y ) is of central importance to us.

2.6. Cross Entropy

message Transmitter Channel Receiver massageB X Y B̂

� Frequently, we have full control of xn, we can measure yn, but we do not know
PX|Y and PY .

� If we assume some QY , we can estimate

− 1

n

n∑

i=1

log2QY (yi) ≈ E[− log2QY (Y )] (2.13)

where the expectation is with respect to PY . This quantity is called cross entropy,
which we also denote by

X(PY ‖QY ) := E[− log2QY (Y )]. (2.14)

2.7. Cross Equivocation

message Transmitter Channel Receiver massageB X Y B̂

� If we assume some QX|Y , we can estimate

− 1

n

n∑

i=1

log2QX|Y (xi|yi) ≈ E[− log2QX|Y (X|Y )] (2.15)
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where the expectation is with respect to PXY . This quantity is called cross equiv-
ocation, which we also denote by

X(PX|Y ‖QX|Y |PY ) := E[− log2QX|Y (X|Y )] (2.16)

=
∑

b∈Y
PY (b)

∑

a∈X
PX|Y (a|b)[− log2QX|Y (a|b)] (2.17)

2.8. Information Inequality for Cross Entropy

� The most important property to us is the information inequality, which states
that

X(PY ‖QY ) ≥ H(PY ) (2.18)

with equality if and only if QY = PY .

⇒ This allows us to learn PY from data by solving

PY ≈ arg min
QY

− 1

n

n∑

i=1

log2QY (yi). (2.19)
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2.9. Further Reading

The textbook [1] provides a good introduction to information measures and their prop-
erties.

References

[1] T. M. Cover and J. A. Thomas, Elements of Information Theory, 2nd ed. John
Wiley & Sons, Inc., 2006.
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Part I.

Receiver
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3. Equalization of Deterministic
Impairments

In this chapter, we consider equalization, i.e., the reconstruction of a transmitted signal
by filtering a received signal. Throughout this chapter, we consider the following design
problem.

� Data:

– At the transmitter, message bits have been mapped to the symbol sequence
x = x0 . . . xn−1, with

xi ∈ {−3,−1, 1, 3}. (3.1)

– The receiver has been synchronized to the transmitter and an oversampled,
noisy sequence is available. The oversampling factor is 2 samples-per-symbol
(SPS), i.e., the received sequence is

y = y0 . . . y2n−1, yi ∈ R. (3.2)

� I/O specification: We are looking for a function f that maps y to the estimate
x̂ = f(y) of x.

– y is the input of f

– x̂ is the output of f

– x is the target output of f

� Loss: MSE(x, x̂) should be small.

A simple device that fulfills the above I/O specification is a downsampler with down-
sampling factor 2. Such downsampler discardes every second sample, as illustrated in
the following diagram.

Downsampler
y0y1y2y3 . . . y0y2y4 . . .

= x̂0x̂1x̂2 . . .

In Figure 3.1, we display a scatterplot of the downsampled sequence x̂ and the trans-
mitted sequence x. As we can see, the downsampled sequence is significantly distorted.
In the next section, we use a neural network (NN) to filter the received sequence y prior
to downsampling.
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Figure 3.1.: Scatterplot of the downsampled sequence x̂ and the transmitted sequence
x.

3.1. Linear Equalization

We now make the function f more powerful by using a linear filter h prior to downsam-
pling, as illustrated in the following diagram.

input y Filter h Downsampler output x̂
z

f

We realize the filter h by a linear NN with weights w0, . . . , w2m and bias b and apply it
at positions i = 0, 1, 2, . . . , 2n− 1, as shown in the following diagram.

· · · yi−m−1 yi−m · · · yi · · · yi+m yi+m+1 · · ·

b
∑

zi

w0
wm w2m

19



Figure 3.2.: Scatterplot of the linearly filtered and downsampled sequence x̂ and the
transmitted sequence x.

The following code implements the filter in pytorch.

filter = torch.nn.Conv1d(in_channels=1,
out_channels=1,
kernel_size=2 * m + 1,
padding='same')

To learn the weights w and the bias b, it remains to

� prepare the data

� initialize an optimizer

� run a training loop

These tasks a carried out in Problem 3.1. In Figure 3.2, we show the scatterplot of the
equalized signal and the transmitted signal. In comparison with Figure 3.1, we note that
linear filtering prior to downsampling has improved the quality of the equalized signal
significantly.
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Figure 3.3.: Scatterplots of downsampling and linear filtering followed by downsampling,
respectively. The received signal was subject to non-linear distortion. As
we can see, the quality of the equalized signal is poor.

3.2. Non-Linear Equalization

We now consider a new data set x, y, where this time, the received sequence y was
subject to non-linear distortion under transmission. As we can see in Figure 3.3, our
linear equalizer is not not able to reconstruct the transmitted signal in a satisfactory
manner. We therefore enhance the capability of our NN equalizer in two ways:

� We add hidden layers.

� We add non-linear activation functions.

3.2.1. Hidden Layers

Our linear NN from Section 3.1 has two layers, namely the input layer consisting of a
real vector y0 with 2m + 1 entries, and an output layer consisting of one real value z.
We can represent the calculation of the input from the output by an inner product

z = y0w
T + b. (3.3)

We can generalize this input-output relation by allowing for more than one output, and
by using more layers. We illustrate this by the example network displayed in Figure 3.4.

� The input is the row vector

y = yi−1yiyi+1 (3.4)
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yi−1 yi yi+1

∑ ∑ ∑

∑ ∑ ∑ ∑

∑ ∑ ∑

∑

z

b10 b11 b12

b20 b21 b22 b23

b30 b31 b32

b4

input layer 0

hidden layer 1

hidden layer 2

hidden layer 3

output layer 4

W1

W2

W3

wT
4

Figure 3.4.: An NN with hidden layers. Since this NN does not have non-linear activation
functions, it is equivalent to a simple linear NN with 3 input unit and 1
output unit.

� The weight matrices are of size

W ∈ R#inputs×#outputs (3.5)

� The output of layer k is

yk = yk−1Wk + bk. (3.6)

� w4 is a row vector, wT
4 is a column vector.

To see which function is realized by the network, we carry out the vector matrix multi-
plications:

x̂ = (((yW1 + b1)W2 + b2)W3 + b3)w
T
4 + b4 (3.7)

= ((yW1W2 + b1W2 + b2)W3 + b3)w
T
4 + b4 (3.8)

= (yW1W2W3 + (b1W2 + b2)W3 + b3)w
T
4 + b4 (3.9)

= yW1W2W3w
T
4︸ ︷︷ ︸

=:wT

+ ((b1W2 + b2)W3 + b3)w
T
4 + b4︸ ︷︷ ︸

=:b

. (3.10)
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We note that the complicated network in Figure 3.4 is equivalent to the simple network

yi−1 yi yi+1

∑

x̂

b

w

Thus, using hidden layers does not enhace our linear NN from Section 3.1 at all! The
essential missing ingredients are non-linear activation functions, which we are going to
discuss next.

3.2.2. Non-Linear Activation Functions

The key step to turn the redundant hidden layers into powerful tools is to pass the
outputs of each linear layer through a non-linear activation function g, which is applied
entrywise. The building block of a non-linear NN is

yi−1 yi yi+1

∑

g

x̂

b

w

which we can express mathematically by

x̂ = g(ywT + b). (3.11)

Common linear activation functions are the rectified linear unit (ReLU), the hyperbolic
tangent (tanh), and the logistic function, which we define and plot in Figure 3.5.

3.2.3. Non-linear Equalizer

The code in Figure 3.6 specifies a non-linear equalizer using three hidden layers and
the ReLU activation function. The scatterplot of the signal equalized by this non-
linear equalizer is displayed in Figure 3.7. As we can see, the equalized signal has high
quality, despite the non-linear distortions during transmission. The implementation and
evaluation of a non-linear equalizer is treated in Problem 3.2.
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ReLU tanh logistic

max{0, x} ex−e−x
ex+e−x

1
1+e−x

Figure 3.5.: Common non-linear activation functions.
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class EQnonlinear(torch.nn.Module):
def __init__(self, num_taps):

super().__init__()
self.num_taps = num_taps

5 self.model = torch.nn.Sequential(
nn.Linear(num_taps, 25),
nn.ReLU(),
nn.Linear(25, 25),
nn.ReLU(),

10 nn.Linear(25, 25),
nn.ReLU(),
nn.Linear(25, 1))

def forward(self, y):
15 return self.model(y)

Figure 3.6.: Nonlinear equalizer in pytorch.

Figure 3.7.: Scatterplot of nonlinear filtering followed by downsampling. In comparison
to linear filtering (see Figure 3.3), the signal equalized by nonlinear filtering
has a much better quality.
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3.3. Further Reading
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3.4. Problems

Problem 3.1. For a provided data set, implement and train a linear equalizer using the
mean squared error (MSE) loss function. Visualize the equalized signal and the target
signal using a scatterplot.
Problem 3.2. For a provided data set, implement and train a non-linear equalizer
using the MSE loss function. Visualize the equalized signal and the target signal using
a scatterplot.
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4. Demapper

X ∈ X Channel Y Demapper decision QX|Y (·|Y )

Figure 4.1.: Communication system with soft demapper outputting for each symbol in
the input alphabet an estimate of the probability that it was transmitted,
given the observed channel output Y . The probabilities are collected in the
distribution QX|Y (·|Y ) on the channel input alphabet X .

A symbol X from an input alphabet X is transmitted over a channel, which outputs
Y . The purpose of a demapper is to provide, based on its channel output observation
Y , a decision on which symbol from the input alphabet was transmitted.

Hard Decision If the channel mapping from input to output is deterministic, then the
demapper may output a hard decision, i.e., a single value x̂(Y ) from the input alphabet
X .

Soft Decision If the mapping from input to output realized by the channel is not
deterministic, i.e., if it is random, then a correct decision may not always be possible.
In this case, the demapper may take a soft decision, i.e., instead of outputting one
single symbol from the input alphabet, the demapper provides for each symbol a ∈ X an
estimate of the probability that it was transmitted, given the channel output observation
Y . We collect these probability estimates in a distribution QX|Y (·|Y ) on X . If a hard
decision (which is occasionally wrong) is required, then the most probable symbol from
the input alphabet may be chosen, i.e.,

x̂(Y ) = arg max
x∈X

QX|Y (x|Y ).. (4.1)

The decision rule (4.1) is called the maximum a posteriori probability (MAP) rule.

4.1. Cross Equivocation Loss Function

4.1.1. Channel Input as Target Value

We now devise a strategy to train a demapper whose output approximates the true a-
posteriori probability (APP) distribution PX|Y (·|Y ). For training, consider the samples

© 2020, 2021 Georg Böcherer, georg.boecherer@tum.de. Version 0.2, 2021-11-04
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xn = x0 . . . xn−1 and yn = y0 . . . yn−1 of channel input and output, respectively. Also,
let QX|Y (·|y) be the actual distribution output by the demapper. We estimate the cross
equivocation of PX|Y and QX|Y by

− 1

n

n−1∑

i=0

log2QX|Y (xi|yi) ≈ E[− log2QX|Y (X|Y )]. (4.2)

By the information inequality, the cross equivocation is lower bounded by the equivoca-
tion

E[− log2QX|Y (X|Y )] ≥ E[− log2 PX|Y ] = H(X|Y ). (4.3)

with equality in (4.3) if and only if QX|Y = PX|Y . Thus, we can use the left-hand side
of (4.2) as cost function to train the demapper, i.e., training consists in minimizing the
cross equivocation estimate

Q∗X|Y = arg min
QX|Y

− 1

n

n−1∑

i=0

log2QX|Y (xi|yi). (4.4)

4.1.2. Message as Target Value

Mapper φ Channel Demapper
A ∈ {0, 1, . . . ,M − 1} X Y decision P0P1 . . . PM−1

Figure 4.2.: Communication system with soft demapper outputting for message a ∈
{0, . . . ,M − 1} an estimate pa of the probability that it was transmitted,
given the observed channel output Y . The probabilities are collected in the
distribution p(Y ) = P = P0P1 . . . PM−1 on the message set {0, 1, . . . ,M−1}.

We would now like to formulate (4.4) in a more generic form. To this end, we represent
the channel input symbol X by the message A ∈ {0, 1, . . . ,M −1}, i.e., X = φ(A). Also,
we define the random vector output by the demapper as

Pa = pa(Y ) = QX|Y (φ(a)|Y ), a ∈ {0, 1, . . . ,M − 1}. (4.5)

In consistency with common practice in machine learning programming frameworks, we
switch our unit of information from bits to nats, so that we can use the natural logarithm
log insted of the binary logarithm log2. (We can always convert nats to bits by dividing
by log(2)). We can now define the cross equivocation (CE) loss function by

ce(a,p) = − log pa [nats] (4.6)

and the CE cost function by

CE(an,pn) =
1

n

n−1∑

i=0

ce(ai,pi). [nats] (4.7)
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4.2. NN Demapper Outputting Probabilities

For input y, an NN demapper should output a distribution p(y) on the message set
{0, 1, . . . ,M − 1}. This translates into the following requirements for the NN demapper
output

1. The NN demapper must have M outputs.

2. Each output pa(y) must represent a probability, i.e., a value between 0 and 1.

3. The outputs should sum to 1.

To fulfill requirement 1., we use an output layer with M neurons. To ensure requirement
2., we use the logistic activation function

σ(x) =
1

1 + e−x
(4.9)

in the output layer. For requirement 3., we need to normalize, which requires processing
all output values jointly. The complete NN output layer is displayed in Figure 4.3. From
inputs ` = `0 . . . `M−1, its outputs are calculated by

pa =
σ(`a)∑M−1
j=0 σ(`j)

, a ∈ {0, 1, . . . ,M − 1}. (4.10)

Note that the input of the output layer is unconstrained, i.e., the activation function
of the output layer transforms any real vector with M entries, possibly taking negative
and positive values, into a distribution on X .

The same is achieved by the softmax activation

softmax(`0`1 . . . `M−1) =
1

∑M−1
j=0 e`j

(e`0 , e`1 , . . . , e`M−1) (4.11)

which realizes the transformation of real vectors into probability distributions. The ath
output of softmax is the probability

pa = softmax(`0`1 . . . `M−1)a =
e`a

∑M−1
j=0 e`j

. (4.12)

An NN terminated by a softmax layer is shown in Figure 4.4.
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∑ ∑ · · · ∑

L0 L1 · · · LM−1

σ σ · · · σ

P0 P1 · · · PM−1

normalization

Demapper outputting probabilities

� NN is terminated by a linear layer, fol-
lowed by logistic activation and nor-
malization.

� Output P is a probability distribution
on the message set {0, 1, . . . ,M − 1}.

� For training, use cross equivocation
loss on probabilities

ce(a,p) = − log pa [nats] (4.8)

Figure 4.3.: NN termination transforming intermediate values La into non-negative prob-
abilities summing to one by using logistic activations followed by a normal-
ization layer. In most cases, it is reasonable to choose La as output of a
linear layer, which is indicated by the linear units in gray. The linear units
have bias and inputs; these are omitted in the diagram.

∑ ∑ · · · ∑

L0 L1 · · · LM−1

P0 P1 · · · PM−1

softmax

Demapper outputting probabilities

� NN is terminated by a linear layer, fol-
lowed by a softmax layer.

� Output P is a probability distribution
on the message set {0, 1, . . . ,M − 1}.

� For training, use cross equivocation
loss on probabilities

ce(a,p) = − log pa [nats]

Figure 4.4.: NN termination transforming intermediate values Li into non-negative prob-
abilities summing to one by using a softmax layer.

∑ ∑ · · · ∑

L0 L1 · · · LM−1

Demapper outputting log probabilities

� NN is terminated by a linear layer.

� Output L is a vector of unnormalized log prob-
abilities on the message set {0, 1, . . . ,M − 1}.

� For training, use cross equivocation loss on log
probabilities

celog(a, `) = − log
e`a

∑M−1
j=0 e`j

.

Figure 4.5.: NN termination outputting unnormalized log probabilities.
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4.3. NN Demapper Outputting Log Probabilities

Let’s consider again the loss (4.6) in the case when the probabilities are calculate by a
softmax layer. We have

ce(a,p) = − log pa (4.13)

= − log
e`a

∑M−1
j=0 e`j

(4.14)

= −`a + log
(M−1∑

j=0

e`j
)

[nats]. (4.15)

In fact, a scaled version of the intermediate value `a plus a normalization term is output!
This suggests to directly define the loss on the intermediate value `a. Up to normaliza-
tion, we can interpret the `a as log probabilities. NN outputting log probabilities have
several advantages

1. The NN has one layer of non-linear activations less (i.e., we save the logistic func-
tions in Figure 4.3 and the softmax layer in Figure 4.4), which makes it less com-
plex for deployment (during training, complexity is unchanged, we just moved the
non-linear activation layer from the NN into the loss function).

2. ML literature often states that (4.15) is numerically more stable. The reason is
that e` may be very small or very large, saturating log e` to ±∞, while ` is a finite
value. The normalization term is a log-sum-exp expression, which can be realized
by

log
(M−1∑

j=0

e`j
)

= `∗ + log
(M−1∑

j=0

e`j−`
∗
)

with `∗ = max{`0, . . . , `M−1} (4.16)

which also alleviates the problem of saturating the log function. See Problem 4.1.

3. In communication systems, the soft decision output of the demapper is fed to a
soft decision FEC decoder, which in most cases work on log probabilities.

4.3.1. Cross Equivocation for Log Probabilities

For training NN demappers outputting log probabilities, the cross equivocation loss is

celog(a, `) = − log
e`a

∑M−1
j=1 e`a

[nats]. (4.17)

(Of course, a numerically stable implementation of the right-hand side should be chosen).
The corresponding cost function is

CElog(a
n, `n) =

1

n

n−1∑

i=0

celog(ai, `i) [nats]. (4.18)
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∑ ∑ ∑ ∑

`0 `1 `2 `3

y

w0
w1 w2 w3

b0 b1 b2 b3

Figure 4.6.: Simple NN demapper for the AWGN channel with input alphabet size 4,
outputting unnormalized log probabilities.

4.4. NN Demapper for AWGN Channel

We now describe a simple demapper that is able to calculate soft decisions for AWGN
channels. For n channel uses, let xn = x0 . . . xn−1 denote real-valued channel inputs.
The channel outputs are

Yi = xi + Zi, i = 0, . . . , n− 1 (4.19)

where the Zi are independent and zero mean Gaussian with variance σ2z , which we
abbreviate by Zi ∼ N (0, σ2z). Since the Zi are random and independent, we can not
learn the noise realization Zn, but since the Zi are identically distributed, we can learn
the variance σ2z , since for large enough n, we have

1

n

n−1∑

i=0

z2i ≈ E[Z2] = σ2z . (4.20)

The input samples xi take values in a finite set of real numbers, for instance, input and
output of the mapper may be given by

message A 0 1 2 3
symbol X -3 -1 1 3

We now want to devise an NN demapper that takes as input the channel output sample y
and outputs soft decisions in the form of unnormalized log probabilities `a = log pa +K,
where pa is a probability and where K is some constant. The simplest such demapper is
shown in Figure 4.6. It merely consists of one linear output layer with M = 4 neurons.
Problem 4.2 compares the demapper in Figure 4.6 to an optimal demapper specified by
analytical expressions.
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4.5. Further Reading

In his youtube video [1], Aurélien Géron, the author of the great textbook on machine
learning [2], talks about entropy and cross-entropy. Effectively, he is talking about what
we call equivocation and cross equivocation in these notes. The conditioning on the
classifier’s observation Y (a picture of a cat) of the object X (a cat) to be classified is
left implicit by Aurélien. This is common practice in the machine learning community
and the reason why what we call cross equivocation loss is called cross entropy loss in the
machine learning programming frameworks, e.g., pytorch and tensorflow. In these notes,
we prefer to emphasize the conditioning on the classifiers observation and therefore use
the term cross equivocation loss.

References

[1] A. Géron, A short introduction to entropy, cross-entropy, and kl-divergence, 2018.
[Online]. Available: https://youtu.be/ErfnhcEV1O8.

[2] A. Géron, Hands-on machine learning with Scikit-Learn, Keras, and TensorFlow:
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4.6. Problems

Problem 4.1. (Numeric stability)

1. Consider the code

import torch

def f64(x):
x = x.type(torch.float64)

5 x = torch.exp(x)
return torch.log(x)

def f32(x):
x = x.type(torch.float32)

10 return x

2. What is the smallest integer value x for which f64(x)!=x?

3. For the value x determined in 1., do you have f32(x)=x?

4. Repeat the analysis for 1. and 2. to compare a float64 implementation of the log-
sum-exp expression on the left-hand side of (4.16) to a float32 implementation
of the right-hand side of (4.16).

Problem 4.2. (How good is the simple AWGN NN Demapper?)

1. Calculate PA|Y (·|y) in terms of channel output y, mapper function φ, and noise
variance σ2Z .

2. Suppose A is uniformly distributed. The signal-to-noise ratio (SNR) in dB is

SNRdB = 10 log10
E(X2)

E(Z2)
. (4.21)

For SNRdB = 5, 6, 7, . . . , 10, use sample sequences to calculate an equivocation
estimate Ĥ(A|Y ) and plot the mutual information estimate in bits

Î(A;Y ) = H(A)− Ĥ(A|Y ) [bits]. (4.22)

3. For each SNR value from 2., train an AWGN NN demapper as in Figure 4.6 using
the cross equivocation cost for log probabilities (4.18).

4. For the trained NN demappers, calculate equivocation estimates in bits from input
and output sequences. Plot the corresponding mutual information estimate in bits.
What is the gap in mutual information and in SNR, compared to the analytical
demapper from 2.?

35



5. For SNRdB = 5, sample a channel output sequence yn and pass it to the trained
demapper to obtain unnormalized log probabilities `n. Assume

`i,a = log pi,a +K, i = 0, . . . , n− 1, a = 0, . . . , 3 (4.23)

where pi,a is a probability and K some constant. Convert `n into probability
distributions pn. What value do you find for K?

6. For SNRdB = 5 and −4 ≤ y ≤ 4, plot the distributions PM |Y (i|y) as function of
y for i = 0, 1, 2, 3. For the same values of y, also plot the probabilities calculated
from the log probabilities output by the NN demapper trained for SNRdB = 5.
How well does the NN demapper approximate the analytical probabilities?

Problem 4.3. (Log probabilities versus probabilities)

1. Repeat steps 3., 4., and 6. of Problem 4.2 for the demapper in Figure 4.6 termi-
nated as in Figure 4.3, using the cross equivocation cost (4.7). Do you observe
differences to the results from Problem 4.2?

2. Repeat steps 3., 4., and 6. of Problem 4.2 for the demapper in Figure 4.6 termi-
nated as in Figure 4.4, using the cross equivocation cost (4.7). Do you observe
differences to the results from Problem 4.2?
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5. Bitwise Demapper

5.1. Binary Classification

B ∈ {0, 1} Mapper Channel Demapper QB|Y (1|Y )
X Y

Figure 5.1.: Binary message transmitted over a channel. The demapper outputs the
probability QB|Y (1|Y ), from which QB|Y (0|Y ) = 1 − QB|Y (1|Y ) can be
calculated. Thus, effectively, the demapper provides us with the distribution
QB|Y (·|Y ) on the binary message set {0, 1}.

We now consider the special case when the channel input alphabet X contains two
symbols, i.e., if |X | = 2. In this case, the demappers we developed in the last chapter
would have two outputs. However, this is redundant, since one probability can be
calulated from the other, as they sum to one. Therefore, in the binary case, we usually use
a demapper with a single output. Following the common practice in the machine learning
community, we let the binary demapper output the probability that the transmitted bit
was 1, i.e.,

P1 = p1(Y ) = QB|Y (1|Y ). (5.1)

(This choice is arbitrary, outputting the accordingly defined probability P0 would work
equally well).

5.1.1. Log Probability Ratio

In the log domain, binary distributions can be defined conveniently by the log probability
ratio (LPR)

L = log
P1

P0
. (5.2)

Using that P0 + P1 = 0, we can recover the probabilities from L by

P1 =
1

1 + e−L
= σ(L) (5.3)

P0 =
1

1 + eL
= σ(−L). (5.4)
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Thus, the logistic function evaluated in L provides us P1 and the logistic function eval-
uated in −L provides us P0.

5.1.2. Hard Decision and Bit Error Rate

Having defined the I/O specification of a binary demapper, it is in place to take a closer
look at how to interprete the output provided to us by the demapper. Suppose the
demapper makes a hard decision B̂, based on its observation Y of the channel output.
We would like to minimize the probability of wrong decision and equivalently, we decide
for the most probable bit value, i.e.,

B̂ = arg max
b∈{0,1}

PB|Y (b|Y ) (5.5)

which is an instance of the MAP rule. In terms of P1, the decision rule is

B̂ =

{
1, if P1 ≥ 0.5

0, if P1 < 0.5.
(5.6)

In terms of L, the rule becomes

B̂ =

{
1, if L ≥ 0

0, if L < 0
(5.7)

=
1

2
(1 + signL). (5.8)

Thus, the hard decision is encoded in the sign of L. Furthermore, the decision is correct
with probability PB|Y (B̂|Y ), so that the bit error rate (BER) is

BER = E[min{PB|Y (1|Y ), 1− PB|Y (1|Y )}] (5.9)

≈ E[min{P1, 1− P1}] (5.10)

where we used ≈, because P1 output by the demapper is only an estimate of PB|Y (1|Y ).
In terms of L, we can write the BER as

BER ≈ E[min{σ(L), σ(−L)}] (5.11)

= E[σ(−|L|)]. (5.12)

Thus, the BER is encoded in the amplitude of L, in other words, |L| reflects how confident
the demapper is about it’s decision. In (5.14), we can replace≈ by = only if the demapper

output is exact, i.e., if L = log
PB|Y (1|Y )

PB|Y (0|Y ) .

We summarize.

1. The hard decision of the binary demapper is encoded in the sign of the LPR L,
i.e.,

B̂ =
1

2
(1 + sign(L)). (5.13)

38



2. The confidence of the binary demapper about it’s decision is encoded in the am-
plitude of the LPR L, i.e.,

BER ≈ E[σ(−|L|)]. (5.14)

3. To assess the BER for performance evaluation, we should not use (5.14), because
of it’s dependence on how exact the demapper is. Instead, we should resort to the
empirical expectation

ˆBER =
1

n

n−1∑

i=0

1(bi 6= b̂i) (5.15)

where 1(True) = 1 and 1(False) = 0. We should use (5.15) whenever the
actually transmitted sequence bn is available, which is the case, e.g., in the design
phase. In the machine learning community, BER is often called accuracy.

5.2. Binary Cross Equivocation Loss

We now want to specify NNs for binary classification that output the probability P1 and
the LPR L, respectively, together with the appropriate loss functions for training.

5.2.1. Binary NN Demapper Outputting Probabilities

As discussed above, for a binary demapper, it is sufficient to output the probability
estimate that the transmitted message is equal to 1. Thus, the requirements are

1. Output a single value.

2. The output must represent a probability, i.e., a value between 0 and 1.

The first requirement is achieved by a layer with a single linear neuron outputting the
intermediate value ` ∈ [−∞,∞], and the second requirement is achieved by terminating
the NN by a logistic activation. Thus, the output of the NN is

p1 = σ(`) =
1

1 + e−`
. (5.18)

The BCE loss is

bce(b, p1) =

{
− log p1, if b = 1

− log(1− p1), if b = 0.
(5.19)

The loss can be compactly written as

bce(b, p1) = −b log p1 − (1− b) log(1− p1). (5.20)

We summarize in Figure 5.2.
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∑

`

σ

p1

� NN is terminated by a linear layer followed by a logistic activation.

� Output p1 is the probability that the message took the value 1.

� For training, use binary cross equivocation (BCE) defined on the
probability of 1

bce(b, p1) =

{
− log p1, if b = 1
− log(1− p1), if b = 0

(5.16)

Figure 5.2.: Binary NN demapper outputting probability p1.

∑

`

� NN is terminated by a linear layer.

� Output is the LPR ` = log p1/p0.

� For training, use BCE defined on the LPR

bcelog(b, `) =

{
− log e`

e`+1
, if b = 1

− log 1
e`+1

, if b = 0.
(5.17)

Figure 5.3.: NN demapper outputting LPR ` = log p1/p0.
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5.2.2. Binary NN Demapper Outputting Log Probability Ratios

Let’s consider again the loss (5.19). By (5.3) and (5.4), we have

bce(1, p1) = − log p1 = − log σ(`) (5.21)

= − log
1

1 + e−`
(5.22)

bce(0, p1) = − log(1− p1) = − log p0 = − log σ(−`) (5.23)

= − log
1

1 + e`
. (5.24)

Thus, we can use an NN terminated by one linear neuron outputting ` ∈ [−∞,∞] and
train it by the BCE on LPR loss, which we define as

bcelog(b, `) =

{
− log σ(`), if b = 1

− log σ(−`), if b = 0.
(5.25)

The loss can be compactly written as

bcelog(b, `) = log(1 + e(1−2b)`). (5.26)

5.2.3. Binary Cross Equivocation Lower Bound

Suppose bit B is transmitted over the channel, the demapper observes channel output
Y and outputs LPR L. By Section 4.1, the BCE cost for sequences bn and `n is lower
bounded as

BCElog(b
n, `n) =

1

n

n−1∑

i=0

bcelog(bi, `i) (5.27)

' log(2) ·H(B|Y ) (5.28)

that is, the BCE cost in bits is lower bounded by the equivocation H(B|Y ), and the

better the demapper approximates the exact LPR log
PB|Y (1|y)
PB|Y (0|y) , the closer the BCE cost

gets to the equivocation H(B|Y ).

5.3. Binary Labels

We now consider message sets {0, 1, . . . ,M − 1} that contain more than 2 messages, i.e.,
M > 2. By using

m = dlog2 |M |e (5.29)

bits, we can define a binary label of the message set. For instance, a natural approach is
to label message a with the binary representation of a, which is instantiated in Table 5.1
for the case when M = 8. The question is now what a good label could be. Intuitively,
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Message 0 1 2 3 4 5 6 7
natural label 000 001 010 011 100 101 110 111

Table 5.1.: Natural binary label of a message set.

Message 0 1 2 3 4 5 6 7
Gray label 000 001 011 010 110 111 101 100

Table 5.2.: Binary Gray label of a message set.

Symbol −7 −5 −3 −1 1 3 5 7
Gray label 000 001 011 010 110 111 101 100

Table 5.3.: Binary Gray label of a real alphabet.

for two messages that are close, we would like the corresponding labels to be close as
well. Considering the natural label in Table 5.1, we see that while the messages 1 and 2
differ by 1, their labels 001 and 010 differ in two bits. We next define Gray labels, which
do not have this issue.

5.3.1. Gray Label for Message Sets

A binary Gray label assigns to neighboring messages labels that differ in only 1 bit. In
Table 5.2, a binary Gray label for M = 8 is displayed.

5.3.2. Gray Label for Real Alphabets

Gray labels can also be defined for alphabets of real numbers. For real numbers, we say
that two numbers r, s are close when their distance |r − s| is small. For a set of real
numbers X , we define the neighbor(s) of r as the symbols in X that are closest to r, i.e.,

neighbor(r) = arg min
s∈X
s 6=r

|s− r| (5.30)

A binary Gray label now has the property that labels of neighbors differ in 1 bit. In
Table 5.3, we display a Gray label for a channel input alphabet with 8 real symbols.
As we will see in Problem 5.5, by using a Gray label on the channel input alphabet
and bitwise demapping, we virtually lose nothing compared to symbolwise demapping
as specified in the previous chapter. In a later chapter, we will revisit the problem of
labeling channel input alphabets. By defining an arbitrary label and then learning the
alphabet, we will recover the optimality of Gray labels for bitwise demapping.

5.3.3. Gray Code Algorithm

Gray labels are not unique. Here, we use Gray label as synonym for binary reflected Gray
codes (BRGCs), which are defined by a recursive procedure. We list an implementation
in python in Figure 5.4
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import numpy as np

def graylabel(m):
"""

5 Calculate binary reflected Gray code (BRGC) for m bits.
"""
if m == 1:

return np.array([[0], [1]], dtype='uint8')
else:

10 label = graylabel(m -1)
half_1 = np.hstack((np.zeros((2**(m - 1), 1), dtype='uint8'),

label))
half_2 = np.hstack((np.ones((2**(m - 1), 1), dtype='uint8'),

np.flipud(label)))
15 return np.vstack((half_1, half_2))

Figure 5.4.: Algorithm to calculate BRGC.

B ∈ {0, 1}m Mapper Channel Demapper L
X Y

Figure 5.5.: Bitwise demapper outputting a vector L = L0L1 . . . Lm−1 of LPRs, one for
each of the bits in the binary label B = B0B1 . . . Bm−1.

∑ ∑ · · · ∑

`0 `1 · · · `m−1

Figure 5.6.: Termination of a bitwise NN demapper outputting m LPRs.

5.4. Bitwise Cross Equivocation Loss

We now consider the setup in Figure 5.5. The message is represented by a binary label
B consisting of m bits and the demapper outputs m LPRs, one for each bitlevel in the
binary label. In Figure 5.11, we show the termination of an NN demapper outputting
m LPRs.

Consider now sample sequence bn and `n, where for i = 0, . . . , n−1, bi is a transmitted
binary label of m bits and where `i is the vector of m LPRs output by the demapper.
The bitwise cross equivocation loss is

bcelog(b, `) =
1

m

m−1∑

j=0

bcelog(bj , `j) (5.31)
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and the bitwise cross equivocation cost is

BCElog(b, `) =
1

nm

n−1∑

i=0

m−1∑

j=0

bcelog(bij , `ij). (5.32)

The outer sum averages over the n samples and the inner sum averages over the m
bitlevels.

5.4.1. Bitwise Cross Equivocation Lower Bound

By Section 4.1, we can lower bound the bitwise cross equivocation similar to (5.28). We
have

BCElog(b, `) =
1

nm

n−1∑

i=0

m−1∑

j=0

bcelog(bij , `ij) (5.33)

'
1

m

m−1∑

j=0

H(Bj |Y ) (5.34)

that is, the bitwise cross equivocation cost is lower bounded by the average of the
equivocations H(Bj |Y ), j = 0, . . . ,m − 1, and the better the demapper outputs Lj

approximate the exact LPRs log
PBj |Y (1|Y )

PBj |Y (0|Y ) , the closer the bitwise cross equivocation loss

approaches the lower bound.

5.5. Bitwise NN Demapper for AWGN

We now define a bitwise NN demapper for additive white Gaussian noise (AWGN)
channels. We consider amplitude shift keying (ASK) constellations (input alphabets)
parametrized as

X2mASK = {±1,±3, . . . , (±2m − 1)} (5.35)

where m = log2 |X |. For instance,

X4ASK = {−3,−1, 1, 3}. (5.36)

For the remainder of this chapter, we assume ASK constellations labelled by Gray codes.
This parametrization may look restrictive, however

� In the next chapter, we will combine equalization and demapping, so that the
equalizer prepares the received signal such that a demapper assuming an ASK
constellation can take over.

� In a later chapter, we will consider transmitter optimization, where we will learn
constellations from scratch.
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Figure 5.7.: Binary demapper.
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Figure 5.8.: Bitwise demapper for two bits labeling 4 symbols.
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channel input alphabet
0

1

2

Figure 5.9.: Bitwise demapper for three bits labeling 8 symbols.
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5.5.1. Bit 0

We start by considering the binary demapper graphically. In Figure 5.7, the channel
input alphabet {−1, 1} with the binary label {0, 1} is displayed, together with the log
probability `0 = log p1/p0. For y < 0, the symbol −1 is closest to the channel output
observation y, and correspondingly, `0 < 0, indicating p1 < p0. At y = 0, both symbols
are equally distant from y and `0 = 0, indicating p1 = p0. Finally, for y > 1, we have
`0 > 0, which indicates that p1 > p0.

5.5.2. Bit 1

In Figure 5.8, we display a bitwise demapper for 2 bits Gray labelling 4 symbols. The
demapper output `0 for the first bitlevel b0 is basically equal to the output of the binary
demapper we just discussed, the reason is that for y < 0, symbols with b0 = 0 are
closest and for y > 0, symbols with b0 = 1 are closest. We now would like to define a
corresponding demapper output `1 for the second bitlevel b1. The symbol −3 to the left
has b1 = 0, then the two symbols {−1, 1} in the middle have b1 = 1, and the symbol 3
on the right again has again b1 = 0. Thus, `1 should be negative to the left and right
and positive in the middle. The displayed `1 has these properties and is piecewise linear.

We now devise an efficient way to calculate both `0 and `1 using function composition.

`0(y) = y (5.37)

`1(`0) = −|`0|+ 2. (5.38)

We make two observations.

1. While `0 plays the role of the function value in (5.37), it acts as a function argument
in (5.38). This is the key principle of defining functions by composition.

2. The absolute value | · | acts like a mirror, i.e., the negative argument values are
reflected on the horizontal axis.

5.5.3. Bit 2

To illustrate the power of function composition further, we now consider 3 bits Gray
labeling 8 symbols. The three curves in Figure 5.9 can be calculated as

`0(y) = y (5.39)

`1(`0) = −|`0|+ 4 (5.40)

`2(`1) = −|`1|+ 2. (5.41)

For better understanding how the calculation of `2 works, we display in Figure 5.10
`2 as function of `2, as function of `1, and as function of `0. Note that in Figure 5.9,
the number of linear sections of `i(y) doubles with i: `0(y) is a straight line and has 1
section, `1(y) has 2 sections and `2(y) has 4 sections. This is an example of how powerful
function composition can be, and directly relates to the “deep” in deep learning, namely
the use of many layers, which corresponds to the composition of many functions.
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Figure 5.10.: The LPR `2 as function of the LPRs `2, `1, and `0.

5.5.4. Complete Demapper

In Figure 5.11, a general bitwise NN demapper for AWGN is displayed that works for
Gray labelled ASK constellations with 2m symbols.
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0 2m−1 2m−2 2

y
∑ | · | ∑ | · | ∑ · · · | · | ∑
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L0 L1 L2 Lm−1

w0 w1 w2 wm−1

-1 -1 -1

https://gitlab.lrz.de/gb/mlcomm:

from mlcomm import demapper

dm = demapper.BitwiseNNDemapper(num_bitlevels=m)

Figure 5.11.: Bitwise NN demapper for Gray labelled ASK constellations in AWGN. The
parameters in blue are trainable.
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5.6. Problems

Problem 5.1. (Binary cross equivocation loss) Verify the compact forms of the BCE
loss (5.20) and (5.26).
Problem 5.2. (Optimality of Binary NN Demapper for AWGN) Consider an AWGN
channel

Y = X + Z (5.42)

with binary phase shift keying (BPSK) input X uniformly distributed on {−1, 1}, Gaus-
sian noise Z ∼ N (0, σ2Z). Assume the binary label B = b(X) with b(−1) = 0 and
b(1) = 1.

1. Show that

` = log
PB|Y (1|y)

PB|Y (0|y)
(5.43)

is given by

` = λ · y. (5.44)

What is the value of λ?

2. For SNR = 0, 1, 2, 3, 4, 5, train the binary NN demapper in Figure 5.3. Compare
the weight w after training with the value of λ that you calculated in 1.

Problem 5.3. (Function composition) Use the function compositions developed in Sec-
tion 5.5 to plot Figure 5.9.
Problem 5.4. (ReLU activation) Design an NN using linear neurons and ReLU activa-
tion that for input y outputs a · |y|+ b.
Problem 5.5. (Bitwise NN demapper) Consider the Gray labeled channel input alpha-
bet

symbol -3 -1 1 3
label 00 01 11 10

1. For SNR = 5, 6, . . . , 10, train the bitwise NN demapper from Figure 5.11.

2. Plot the LPRs `0(y) and `1(y) output by the trained NN demapper for y ∈ [−4, 4].

3. For the trained NN demapper, estimate the sum of the bitwise equivocations

H(B0|Y ) + H(B1|Y ) [bits]. (5.45)

How does it compare to the equivocation achieved by the symbolwise NN demapper
from Problem 4.2?
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6. Equalization in Random Noise

In this chapter, we bring together the signal reconstruction by equalization considered
in Chapter 3, and the message classification by demapping considered in Chapters 4 and
5.

Mapper Channel Equalizer f Demapper
A X Y f(Y ) L

Recall that in Chapter 3, we considered the transmission of a real signalX over a channel.
The receiver observed the channel output Y representing a distorted version of X. We
then devised an equalizer f with the aim to reconstruct X from Y . We considered the
case where the residual error

X − f(Y ) (6.1)

is virtually zero, i.e., when the equalizer can reconstruct the transmitted signal from the
channel output. We called this scenario equalization of deterministic impairements and
we used as criterion to train our equalizer the MSE loss

mse(x, f(y)) = |x− f(y)|2. (6.2)

In this chapter, we consider the case when the residual error (6.1) is non-zero and random,
e.g., because the channel impairement is in part random. Thus, the reconstruction X̂ =
f(Y ) at the equalizer output will be a noisy version of X, and it will not be deterministic,
i.e., transmitting the same signal twice may result in different reconstructions.

The fundamental question is now

What is a good reconstruction f(Y ) for random impairements? (6.3)

The key observation is that, in the end, the purpose of a communication system is to
reconstruct the transmitted message A. Based on this observation, we will develop two
approaches to answer question (6.3):

Approach 1: We concatenate the equalizer f with a demapper proxy outputting a soft deci-
sion L. A good equalizer reconstructs the transmitted signal so that when this
reconstruction is fed to the demapper, the soft decision L output by the demapper
minimizes the equivocation of message A given L.

© 2020, 2021 Georg Böcherer, georg.boecherer@tum.de. Version 0.2, 2021-11-18
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Approach 2: We don’t even try to reconstruct the transmitted signal. Instead, we directly aim
for outputting a soft decision L that minimizes the equivocation of message A
given L, effectively integrating equalization and classification in one device.

Most of this chapter discusses a toy example in detail, namely a BPSK signal that is
impaired by AWGN and then attenuated.

6.1. Equalization of Attenuated BPSK Signal

Mapper + × Equalizer f Demapper

Z ∼ N (0, σ2Z)

γ

B

∈ {0, 1}
X

∈ {−1, 1}
Y Ỹ Yeq

L = 2
σ2
Z
Yeq

Figure 6.1.: Bit B is mapped to the BPSK signal X and impaired by AWGN. The
noisy signal is attenuated by γ. An equalizer reconstructs the signal and a
demapper outputs a soft decision on the transmitted bit, given the equalizer
output Yeq.

We consider the setup in Figure 6.1. A binary message B is mapped to a BPSK signal
X ∈ {−1, 1}. The signal is corrupted by additive noise and the noisy signal is attenuated
by γ, i.e.,

Ỹ = γ(X + Z) (6.4)

is received, where Z ∼ N (0, σ2), i.e., Z is zero mean Gaussian with variance σ2 and
where γ is a positive scalar. We will now proceed in two steps.

1. We set γ = 1, i.e., we assume the absence of attenuation, and we derive the optimal
binary demapper.

2. We use the demapper derived in step 1. and let γ take an arbitrary positive
value. We then insert an equalizer between channel and demapper whose purpose
is to compensate the attenuation γ, so as to guarantee optimal functioning of the
demapper.

The central finding of this section will be that

� MSE E[|X − Yeq|2] is not the appropriate equalizer criterion in this scenario.

� The equalizer should minimize the equivocation of the message B given the demap-
per output L.
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6.1.1. Optimal Demapper in the Absence of Attenuation

We start by considering the case when there is no attenuation (Ỹ = Y ) and no equalizer
(Yeq = Ỹ ). By Problem 5.2, we know that the optimal demapper outputs

L =
2

σ2Z
Y. (6.5)

We fix the demapper to

`(yeq) =
2

σ2Z
yeq (6.6)

and since Yeq = Ỹ = Y , this demapper is optimal in the absence of attenuation and
explicit equalization.

6.1.2. Optimal Equalizer

We now let γ take an arbitrary non-zero value. Informally, to ensure that demapper
(6.6) is optimal, we require

yeq = y (6.7)

⇒ foptimal(ỹ) = y (6.8)

⇒ foptimal(ỹ) =
1

γ
ỹ (6.9)

so the optimal equalizer is linear and scales it’s input by 1/γ, fully compensating the
attenuation.

Formal Derivation Formally, let’s write the demapper output as probabilities

QB|Yeq(1|yeq) = σ

(
2

σ2Z
yeq

)
, QB|Yeq(0|yeq) = σ

(
− 2

σ2Z
yeq

)
. (6.10)

The corresponding probabilities output by the optimal demapper are

PB|Y (1|y) = σ

(
2

σ2Z
y

)
, PB|Y (0|y) = σ

(
− 2

σ2Z
y

)
. (6.11)

Also, we have

Yeq = f(Ỹ ) = f(γY ). (6.12)

Thus, by the information inequality, we have

E
[
− logQB|Yeq(B|f(γY ))

]
≥ E

[
− logPB|Y (B|Y )

]
(6.13)

52



with equality if and only if

QB|Yeq(1|f(γy)) = PB|Y (1|y) (6.14)

⇔ σ

(
2

σ2Z
f(γy)

)
= σ

(
2

σ2Z
y

)
(6.15)

⇔ f(γy) = y (6.16)

⇔ f(ỹ) =
1

γ
ỹ. (6.17)

Thus, the optimal equalizer (6.9) is recovered when we minimize the left-hand side of
(6.13), which is effectively the CE loss. For binary message sequences bn, channel output
ỹn, and demapper output `n, the BCE cost is

BCElog(b
n`n) =

1

n

n−1∑

i=0

bcelog(bi, `i) (6.18)

=
1

n

n−1∑

i=0

bcelog

(
bi,

2

σ2Z
f(ỹi)

)
. (6.19)

and we obtain the optimal equalizer by minimizing the last term over f . Note that we
made no restrictions on f , in particular, we did not require it to be linear.

6.1.3. Linear MSE Equalizer

We now consider a linear equalizer minimizing the MSE

E[(f(Ỹ )−X)2]. (6.20)

A linear equalizer calculates f(ỹ) = αỹ. We thus look for the α that minimizes the MSE,
i.e., we calculate the derivative w.r.t. α and set it equal to zero. By Problem 6.1

flinear, mse(ỹ) =
1

γ(1 + σ2Z)
ỹ

=
1

γ(1 + 1
snr )

ỹ (6.21)

which is different from the optimal equalizer (6.9). With increasing signal-to-noise ratio
(SNR), the linear MSE equalizer approaches the optimal equalizer.

6.1.4. Non-Linear MSE Equalizer

Suppose now that we impose no restriction on the equalizer f , in particular, we do not
restrict the equalizer f to be linear. In this case, for each value of ỹ, we can choose f(ỹ)
so that the MSE is minimized. Conditioned on Ỹ = ỹ, we write the MSE as

E[(f(ỹ)−X)2|Ỹ = ỹ] = PX|Ỹ (−1|ỹ)(f(ỹ)︸︷︷︸
=:a

+1)2 + PX|Ỹ (1|ỹ)(f(ỹ)︸︷︷︸
=a

−1)2. (6.22)
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We can now minimize the MSE by calculating the derivative of the right-hand side w.r.t.
a and setting it equal to zero. By Problem 6.1, the MSE is minimized by

a = 2 · PX|Ỹ (1|ỹ)− 1. (6.23)

By Problem 6.1, we can use (5.3) to express PX|Ỹ (1|ỹ) in terms of ỹ/γ to finally obtain

fnon-linear, mse(ỹ) = tanh

(
snr

ỹ

γ

)
. (6.24)

6.1.5. Discussion

1. In Figure 6.2, we plot the I/O characteristics of the optimal, the linear MSE, and
the non-linear MSE equalizers for γ = 0.7 and SNR = 7 dB.

2. In Figure 6.3, we plot the SNR after equalization for γ = 0.7 against the SNR
after optimal equalization. Comparing to Figure 6.4, we see that the SNR after
MSE equalization cannot be used for predicting the signal quality in terms of
information content. In particular, the SNR after non-linear MSE equalization
highly overestimates the signal quality.

3. In Figure 6.4, we plot the equivocation in bits for the three considered equalizers
for γ = 0.7. For high SNR, the linear MSE equalizer does not lose much compared
to the optimal equalizer, while the non-linear MSE equalizer is more than 1 dB
SNR worse than the optimal equalizer. The reason is that it removes soft informa-
tion from the received signal, i.e., the tanh characteristics of the non-linear MSE
equalizer acts rather like a hard-decision than a soft-decision.

6.2. Demapper Proxies for Equalizer Design

6.2.1. Symbolwise Demapping

In Figure 6.5, we display a symbolwise demapper proxy for equalizer training.

6.2.2. Bitwise Demapping

In Figure 6.6, we display a bitwise demapper proxy for equalizer training.

6.3. Integrated Equalization and Demapping

Alternative to using an equalizer with a single output representing a signal reconstruction
followed by a demapper proxy, we can integrate equalization and demapping. In this
case, the equalizer input is processed by one NN, which outputs the demapper output.
In particular, there is no explicit signal reconstruction, so the integrated NN may not
have an intermediate layer with a single neuron representing the reconstructed signal.

The integrated equalizer and demapper should be trained as a demapper, i.e., the
symbolwise CE or the bitwise BCE loss should be used for training.
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Figure 6.2.: Equalizer characteristics at 7 dB SNR.
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∑ ∑ · · · ∑

`0 `1 `M−1

x̂ = f(y)

equalizer f

channel

mapper

Message a ∈ {0, 1, . . . ,M − 1}

x

y

w0
w1 wM−1

b0 b1 bM−1

Train the equalizer f by minimizing the CE loss

celog(a, `) = − log
e`a

∑M−1
j=0 e`j

(6.25)

Figure 6.5.: Symbolwise demapper proxy for equalizer training.
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Bitwise demapper
Figure 5.11

x̂ = f(y)

equalizer f

channel

mapper

Message b ∈ {0, 1}m

x

y

Train the equalizer f by minimizing the BCE loss

bcelog(b, `) =
1

m

m−1∑

j=0

bcelog(bj , `j) (6.26)

=
1

m

m−1∑

j=0

log(1 + e(1−2bj)`j ) (6.27)

Figure 6.6.: Bitwise demapper proxy for equalizer training.
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6.4. Further Reading

In [1], a non-linear equalizer based on Volterra series is trained w.r.t. the BCE loss via
a demapper proxy based on the max-log approximation (MLA). Also, a NN integrating
equalization and bitwise demapping is considered and trained w.r.t. the BCE loss.
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6.5. Problems

Problem 6.1. (MSE equalizers for attenuated BPSK in AWGN)

1. Show that for channel (6.4), the optimal linear MSE equalizer is given by (6.21).

2. Show that for channel (6.4), the optimal non-linear MSE equalizer is given by
(6.24).

Problem 6.2. (NN Equalizers for attenuated BPSK in AWGN) In this problem, you
train various equalizers for channel (6.4) with γ = 0.7 and you compare the theoretical
findings of Section 6.1 to the input-output characteristics of trained NN equalizers.

1. Linear MSE equalizer: implement a linear NN equalizer f consisting of a single
linear neuron and train it w.r.t. the MSE loss |X − f(Ỹ )|. Plot the I/O function
f of the trained NN and compare it to (6.21).

2. Non-linear MSE equalizer: implement a non-linear NN equalizer f consisting
of several hidden layers with non-linear activations and train it w.r.t. the MSE loss
|X − f(Ỹ )|. Plot the I/O function f of the trained NN and compare it to (6.24).

3. Optimal equalizer: Use the same non-linear NN as in 2. as equalizer. Concate-
nate it with a single linear neuron demapper whose parameters you fix according
to Section 6.1.1. Train the NN equalizer across the demapper proxy w.r.t. the
BCE bcelog(B,L). Plot the I/O function f of the trained NN and compare it to
(6.9).

4. Use the NN equalizer from 1.–3. concatenated with the single linear neuron demap-
per fixed according to Section 6.1.1 to verify the curves in Figure 6.4.
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Part II.

Transmitter
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7. Mapper

Transmitter Channel
NN

Receiver
Loss

an yn `n e

not required during training

Figure 7.1.: Receiver training

NN
Transmitter

Channel Receiver Loss
an `n e

required as differentiable function
during training

Figure 7.2.: Transmitter training.

NN
Transmitter

Channel
NN

Receiver
Loss

an `n e

required as differentiable function
during training

Figure 7.3.: End-to-end training.

In Part 1, we considered the design of receiver components. For training, it was
sufficient to have a message sequence an and an observation yn of the channel output,
as illustrated in Figure 7.1. These two sequences can be recorded prior to training so
that during training, there is no need to access transmitter and channel. In particular,
message and channel output can be measured in a lab experiment and receiver training
can then be done offline.

In contrast, for transmitter training, the loss gradient needs to be backpropagated
all the way through receiver and channel to the transmitter, so that the transmitter
parameters can be updated. Therefore, channel and receiver must be available as differ-
entiable functions during training. This is illustrated in Figure 7.2. The preparation of a
differentiable channel model, possibly by training based on experimental measurements,
is a challenging task of its own, which we will consider in a later chapter.

For now, we simply assume the existence of a differentiable channel model and focus
our attention on training the transmitter. In fact, we will go a step further and consider
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Figure 7.4.: Autoencoder.

end-to-end training, i.e., we will train transmitter and receiver jointly. The reason for
doing so is the following: when designing the receiver, we assumed specific transmitter
configurations like symbol constellations and binary labels as fixed and we then designed
the receiver for this specific transmitter, which, in turn, results in a specific receiver.
Thus, to gain insights about how optimal transmitters may look like, we also need to
optimize the receiver.

We will start by introducing the autoencoder, which is widely applied in machine
learning. Closely following the autoencoder paradigm, we will then discuss the mapper
design, i.e., the mapping of messages to channel input symbols. We will discuss mappers
for two different message representations, namely the one-hot representation and the
binary representation.

7.1. Autoencoder

We display the basic architecture of an autoencoder in Figure 7.4. Data X is encoded by
φ to a latent representation Z, which is passed through a bottleneck χ. The bottleneck
output is decoded by ψ to X̂, a reconstruction of X. Encoder φ (and thereby latent
representation Z) and decoder ψ are chosen jointly. Thus, without the bottleneck,
encoder and decoder would simpy copy their input to the output, so that X̂ is a perfect
reconstruction of X. With the bottleneck, the encoder needs to compress the data to
a latent representation that is robust w.r.t. the bottleneck, so that the decoder can
reconstruct the original data X from the bottleneck output. The bottleneck appears in
many variations. In the following, we will discuss a few bottleneck examples relevant for
communications.
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7.1.1. Dimensionality Reduction Bottleneck

∑

∑

...

∑

Z0

Z1

ZM−1

Suppose data X is an N -dimensional vector. Dimensionality reduction corresponds to
enforcing an M < N dimensional latent representation Z. In a NN, the dimensionality
reduction bottleneck can be realized by a layer with M output units, as displayed above.
We will discuss this in Section 7.3, where we consider the case when encoder φ and
decoder ψ are linear functions, which is called principal component analysis (PCA).

7.1.2. Amplifier Saturation Bottleneck

tanh

+
Z

N

An ideal amplifier would scale a signal x by some scalar α, i.e., it would output α · x,
independent of the amplitude of x. For physical reasons, this is impossible in practice.
Instead, the output amplitude is bounded by some maximum value. Typically, the am-
plifier characteristics is linear for low amplitudes and becomes non-linear and saturates
for large amplitudes, with a smooth transition from the linear region to saturation. This
amplifier saturation can be modelled by the tanh function. With the tanh function alone,
the encoder could scale the signal down to the linear region and the decoder could scale
the signal up again, so that the tanh would effectively not present any real bottleneck.
By scaling down the signal, the tanh output would effectively have low power, which is
impractical. To enforce the encoder to use the full range of the amplifier, we therefore
add Gaussian noise N with a fixed variance to the amplifier output. As a result, we have
two competing impairments: a low power signal is linearly amplified, and the dominant
impairment is the additve noise, while for a high power signal, the non-linear amplifica-
tion is the dominant impairment. Thus, optimizing encoder and decoder also balances
between non-linear amplifier impairment and noise corruption.

63



7.1.3. SNR Bottleneck

Normalization
per batch

+
Z

N

Communication systems are frequently subject to an average power constraint P . As
displayed in the diagram above, such average power constraint can be implemented in an
NN by a normalization layer. Since stochastic gradient descent (SGD) works on batches,
we consider the average power per batch, i.e., for a batch size nbatch, the normalization
layer outputs

normalization(znbatch)i = zi ·
√

P∑nbatch−1
i=0 |zi|2

. (7.1)

Similar to the amplifier saturation, this normalization has effectively no effect if the
signal is not corrupted by noise. Therefore, after normalization, we add Gaussian noise
with variance σ2. A convenient parametrization of the noise variance is via the SNR by

snr =
P

σ2
⇒ σ2 =

P

snr
. (7.2)

7.2. Mapper

The task of the mapper is to map a message a ∈ A = {0, 1, . . . ,M − 1} to a real symbol
x(a). In the autoencoder framework, the mapper plays the role of an encoder φ and
the real symbol plays the role of the latent representation. We have considered mappers
before, for instance, we used the ASK constellation

X = {±1,±3, . . . ,±(M − 1)} (7.3)

indexed by the message a. The mapping to ASK symbols can also be realized by an
affine mapping from A to X by

a 7→ 2 · a−M + 1. (7.4)

For instance, for M = 4, the mapping (7.4) yields

a 0 1 2 3
2 · a− 3 = x(a) −3 −1 1 3

Consider now the slightly modified constellation

X = {−4,−1, 1, 4}. (7.5)
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Figure 7.5.: Symbol mapper using one hot representation followed by a linear neuron.
This mapper is suitable for training end-to-end w.r.t. CE loss on the message
and the demapper output.

Let’s try to map a message a ∈ {0, 1, 2, 3} to X by the affine mapping a 7→ α ·a+β. We
have

α · 0 + β = −4⇒ β = −4 (7.6)

α · 1− 4 = −1⇒ α = 3 (7.7)

3 · 2− 4 = 2  (7.8)

This system of equation has no solution! As we want to learn the constellation X , we
need a mapping from messages to real symbols that can realize any real constellation X .
We will next present two such mappings, one that is suitable for symbolwise demapping
and one that is suitable for bitwise demapping.

7.2.1. Symbol Mapper for One-Hot Message Representations

To easily realize a mapping from messages to arbitrary real constellations, we represent
the message a ∈ A = {0, 1, 2, . . . ,M − 1} by the one-hot representation

c = c0c1 . . . cM−1 (7.9)

which is a vector with M entries, which are all zero, except for one, which is equal to 1
(“hot”). The message value determines which entry is hot, i.e.,

ci(a) = 1(i = a) =

{
1, if i = a

0, if i 6= a
(7.10)

For instance, for M = 4, the one-hot representation is given in the following table.

message a one-hot representation c

0 1000
1 0100
2 0010
3 0001

65



binary
non-linear

NN

b0

b1

...

bm−1

message a

∈ {0, 1, . . . , 2m − 1}
real symbol xa

Figure 7.6.: Bit mapper using binary representation followed by a non-linear NN. The
bit mapper is suitable for training end-to-end w.r.t. BCE loss on the message
bits and the output of a bitwise demapper.

A symbol mapper now consists of a one-hot representation followed by a linear neuron
as displayed in Figure 7.5. By Problem 7.1, the symbol mapper can map to any real
constellation and is suitable for learning constellations by end-to-end training w.r.t. the
CE loss, see, e.g., Problem 7.2.

7.2.2. Mapper for Binary Message Representations

Suppose now we want to use a bitwise demapper and the BCE loss for learning a con-
stellation by end-to-end training. We represent message a ∈ A = {0, 1, 2, . . . , 2m − 1}
by m bits b = b0b1 . . . bm−1. By Problem 7.1, to map the binary representation to an
arbitrary constellation X , we need a non-linear NN with m inputs and 1 output. If the
non-linear NN is sufficiently rich, we can learn any constellation of real signal points, see
also Problem 7.3. We display the bit mapper in Figure 7.6.

7.3. Principal Component Analysis

PCA considers dimensionality reduction of data by a linear mapping, followed by linear
reconstruction, with the aim to minimize the MSE between the data and its recon-
struction. PCA is a linear autoencoder with dimensionality reduction as bottleneck.
Specifically, consider data consisting of n samples of N dimensional row vectors, i.e.,

x0,x1, . . . ,xn−1, xi ∈ RN . (7.11)

The encoder φ maps sample x to an M < N dimensional vector z by an affine mapping,
i.e.,

z = xR+ r, R ∈ RN×M . (7.12)

The decoder ψ calculates from z a reconstruction x̂ by an affine mapping, i.e.,

x̂ = zQ+ q, Q ∈ RM×N . (7.13)
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The goal is to minimize the MSE between data and reconstruction, i.e.,

min
Q,R,q,r

n−1∑

i=0

‖xi − [(xiR+ r)Q+ q]‖22. (7.14)

PCA can be realized by a linear NN with two linear layers. The first linear layer plays
the role of the encoder φ and has N inputs and M outputs, which correspond to the
latent representation of reduced dimensionality. The second layer plays the role of the
decoder ψ and has M inputs and N outputs. MatrixR and vector r are weights and bias
of the encoding layer, respectively; Q and q are weights and bias, respectively, of the
decoding layer. In Problem 7.4, we consider a simple example to illustrate the principle
of PCA.
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7.4. Further Reading

The work [1] promotes the idea of interpreting a communication system as an autoen-
coder that can be trained end-to-end. In [2, Figure 4], symbol- and bit mappers for
complex signal points subject to an SNR constraint are trained end-to-end using CE
and BCE loss, respectively. BCE loss trained bit mappers for 1D peak power con-
straints and 2D average power constraints are presented in [3]. PCA is treated in detail,
e.g., in [4, Chapter 12]. In [5, Chapter 8], PCA using Scikit-Learn is discussed.
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7.5. Problems

Problem 7.1. (One hot and binary representations) Consider a mapper that maps a
message a ∈ A = {0, 1, . . . ,M−1} withM = 2m to a constellation X = {x0, x1, . . . , xM−1},
i.e., a 7→ xa. The constellation is arbitrary and fixed.

1. Let c = c1c2 . . . cM−1 be a one-hot representation of message a, i.e., ci(a) = 1(i =
a). Show that a linear neuron with M inputs can realize the mapping c(a)→ xa,
a ∈ A, for any constellation X .

2. For M = 8, sample the symbols in X uniformly at random from the interval [−8, 8]
and train a linear neuron that realizes c(a) 7→ xa using the MSE loss.

3. Let b = b0b1 . . . bm−1 be a binary representation of message a. Identify a con-
stellation X for which a linear neuron with m inputs cannot realize the mapping
b(a)→ xa.

4. For the input alphabet you identified in 3., train a linear unit with m inputs using
the MSE loss to verify that the mapping b(a)→ xa can indeed not be realized.

5. For the input alphabet from 3., devise a non-linear NN with m inputs that ap-
proximates the mapping b(a)→ xa well w.r.t. the MSE loss.

Problem 7.2. (Amplifier saturation) In this problem, we consider the amplifier satura-
tion bottleneck, as discussed in Section 7.1.2. Consider the channel

tanh +

Z

where Z is zero mean Gaussian noise.

1. Implement the channel as differentiable function supporting torch.autograd
using functions provided by torch.

2. Use a linear neuron with M inputs and 1 output as transmitter and a linear neuron
with 1 input and M outputs as receiver. Sample a message a ∈ {0, 1, . . . ,M − 1}
and use its one-hot representation c as transmitter input. Train transmitter and
receiver w.r.t. the cross equivocation ce(a, `), where ` is the receiver output.

3. Plot the learned channel input alphabet and compare it to the scatterplot of the
channel output.

Problem 7.3. (SNR Constraint) In this problem, we consider an SNR constraint as
introduced in Section 7.1.3. Specifically, we consider a complex signal, which we repre-
sent by a real signal where two successive real symbols are the inphase and quadrature
components, respectively, of one complex symbol, i.e.,

x2ix2i+1 ↔ ci = x2i + j · x2i+1. (7.15)
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We normalize the average power of the signal, i.e., for a batch size of nbatch complex
symbols, we impose

1

2nbatch

2nbatch−1∑

i=0

x2i = P. (7.16)

After normalization, we add zero mean Gaussian noise. The resulting bottleneck is

Normalization
per batch

+
Z

N

The task is now to learn a 2D constellation with 16 complex symbols.

1. Implement the normalization layer followed by AWGN as differentiable function
in pytorch.

2. For a one-hot representation of the message, implement a linear unit with M = 16
inputs and 2 outputs as a mapper at the transmitter, and a linear unit with 2
inputs and M = 16 outputs as demapper at the receiver.

3. Jointly train mapper and demapper w.r.t. CE loss for SNR equal to 0, 2, . . . , 10
dB and plot the learned constellations.

4. For a binary representation of the message, implement a non-linear NN with m = 4
inputs and 2 outputs as mapper at the transceiver and a non-linear NN with
2 inputs terminated by a linear layer with m = 4 outputs as demapper at the
receiver.

5. Jointly train mapper and demapper w.r.t. BCE loss on LPRs for SNR equal to
0, 2, . . . , 10 dB and plot the learned constellations.

6. Verify if the learned bit mappings are Gray.

Problem 7.4. (PCA) Generate a data set consisting of n = 10 000 vectors of dimension
N = 2 by sampling from a joint Gaussian distribution with covariance matrix and mean
vector given by

C =

[
1 0.5

0.5 2

]
, µ =

[
1
2

]
. (7.17)

1. Implement a PCA autoencoder with dimensionality reduction bottleneck withM =
1. Train the NN w.r.t. to the MSE and scatterplot the data and its reconstruction,
i.e., its principal component.

2. Compare to what you get when using sklearn.decomposition.PCA from the
Scikit-Learn package.
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8. Spectral Shaping

Mapper 2↑ Transmit filter
(Interpolation) Channel

Receive filter
(Decimation)

2↓ Demapper
Message

a ∈ {0, 1, . . . ,M − 1}
log probs

` ∈ RM

Figure 8.1.: System to learn end-to-end transmit filter, receive filter, and demapper, for
making the transmitted signal fulfill the spectral requirements.

Practical communication systems are often subject to constraints on the frequency
spectrum of the signal dissipated by the transmitter. For instance, only certain frequen-
cies may be allowed for use. The transmitter must therefore spectrally shape the signal,
so as to meet the spectral requirements. This is achieved in part in the analog fron-
tend. To allow for the use of cheap analog hardware, the spectrum is fine-tuned before
the digital-to-analog conversion (DAC) by first upsampling the digital signal and then
using a digital interpolation filter, which shapes the signal spectrally. Correspondingly,
at the receiver, a decimation filter corrects the signal spectrum, which is followed by
downsampling and demapping.

In this chapter, we will first discuss examples of spectral requirements. We will then
give a short summary of mathematical tools for spectral analysis, which we need for
monitoring the filter training. Next, we will discuss the effects of upsampling, filtering,
and downsampling in the spectral domain. Finally, we will discuss filter design by end-
to-end training.

8.1. Spectral Requirements

8.1.1. Low Pass Filter

1
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frequency

0.0

0.2

0.4

0.6

0.8

1.0

low pass filter
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Suppose the transmitter’s analog frontend acts like a low pass filter, which attenuates
high frequencies. In this case, the digital transmit filter should place most of the signal’s
power in the low frequency regime, where the signal is not attenuated by the analog
frontend.

8.1.2. Interference
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Suppose some other transmissions is going on in the neighboring frequency bands. To
cope with this interference, the digital transmit filter should avoid placing power in the
neighboring frequency bands and instead allocate most of the signal power in the center
part of the spectrum, where there is no interference.

8.1.3. Pilot Tone

1
2T

1
2T

frequency

40

20

0

20

40

po
we

r s
pe

ct
ra

l d
en

sit
y 

[d
B]
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Suppose some other device transmits a narrow band pilot tone. To cope with this pilot
tone, the transmit filter should avoid allocating power to the pilot tone frequency, and
the receive filter should filter out the pilot tone.

8.2. Spectral Analysis

8.2.1. Discrete Fourier Transform

The discrete Fourier transform (DFT) of a signal x of length n is

xf (k) =

n−1∑

i=0

x(i)e−2πj
ik
n , j =

√
−1, k = 0, 1, . . . , n− 1. (8.1)
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The DFT is implemented, e.g., in numpy.fft.fft and torch.fft.fft. The inverse
DFT is given by

x(i) =
1

n

n−1∑

k=0

xf (k)e2πj
ki
n , i = 0, 1, . . . , n− 1 (8.2)

and it is implemented, e.g., by numpy.fft.ifft and torch.fft.ifft. We interpret
x as a time signal, i.e., its entries x0, x1, . . . , xn−1 are samples taken at different time
instances. The DFT decomposes the time signal x into a sum of n tones

e2πj
ki
n = cos

(
2π
ki

n

)
+ j sin

(
2π
ki

n

)
, k = 0, . . . , n− 1. (8.3)

The kth tone has frequency k/n cycles per sample (for other frequency units, see Sec-
tion 8.2.4). The frequency coefficient xf (k) tells us how much the kth frequency is
weighted in the time signal x. Thus, xf is a frequency signal.

8.2.2. Power Spectral Density

Recall that we defined the power of our time signal x as

P =
1

n

n−1∑

i=0

|xi|2. (8.4)

If we draw the samples xi from a distribution PX , then the empirical distribution in
(8.4) approximates PX and we have

P ≈ E(|X|2). (8.5)

We now want to know how the power in the signal x is distributed to the n frequencies.
If the samples in the time signal are random variables Xi, then also the samples Xf (k) in
the frequency signal are random variables. Consequently, using probabilistic expectation,
we can define the power spectral density (PSD) of x as

Sxx(k) =
1

n
E[|Xf (k)|2], k = 0, 1, . . . , n− 1. (8.6)

The PSD and the signal power relate via

E(|X|2) =

n−1∑

k=0

Sxx(k). (8.7)

For replacing the probabilistic expectation in (8.6) by an empirical expectation, we
consider nseg time signal segments x0, . . . ,xnseg−1, each of length nperseg. For each
segment, we calculate the DFT

xf` = DFT(x`), ` = 0, 1, 2, . . . , nseg − 1. (8.8)
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We can now estimate the PSD via

Sxx(k) ≈ 1

nperseg

1

nseg

nseg−1∑

`=0

|xf`(k)|2

︸ ︷︷ ︸
≈E[|Xf (k)2|]

, k = 0, 1, . . . , nperseg − 1. (8.9)

Note that we considered in total n = nseg · nperseg samples. By using large nperseg (few
long segments), we get a high resolution in the frequency domain, while using large nseg
(many short segments) makes our PSD estimate more confident. Thus, for a fixed total
number n of samples, we have to trade resolution for confidence. In Problem 8.1, we
compare (8.9) to a refined version called Welch’s method, which is implemented, e.g., in
scipy.signal.welch.

8.2.3. White Signals

A random signal X = X0X1, . . . , Xn−1 is white, if the samples Xi are independent, have
zero mean, and variance σ2. Equivalently, the PSD is constant and given by

Sxx(k) =
1

n
σ2, k = 0, . . . , n− 1. (8.10)

In Problem 8.1, we consider the PSD of white and colored (non-white) signals.

8.2.4. Frequency Units
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When plotting the spectrum calculated by the DFT (8.1), we often want to choose a
more informative frequency unit than simply the frequency slot index k. Furthermore,
as k = 0 corresponds to the frequency 0 cycles per sample, we often prefer to place
frequency slot k = 0 in the middle of the displayed spectrum. By defining

k = k′modn (8.11)

we can choose any range of n successive integers for k′, and we can then plot xf (k′modn)
against k′. Usually, the range k′ ∈ [−n

2 ,
n
2 − 1] is chosen. A convenient tool to

facilitate the conversion of the frequency signal xf to this range is implemented in
numpy.fft.fftshift and torch.fft.fftshift.
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2↑ Filter h 2↓
x = x0x1 . . . xn−1 u = u0u1 . . . u2n−1 y = y0y1 . . . y2n−1 d = d0d1 . . . dn−1

Figure 8.2.

8.3. Spectral Filter Properties

In this section, we discuss the spectral effects of upsampling, filtering, and downsampling
in the system displayed in Figure 8.2. For an example signal, we display the spectra
after each step in Figure 8.3.

8.3.1. Upsampling

2↑
x = x0x1 . . . xn−1 u = u0u1 . . . u2n−1

Upsampling by factor 2 inserts 0s between samples:

u(i) =

{
x(i/2) if i is even

0 if i is odd
(8.12)

that is,

x0x1x2 . . . 7→ x00x10x20 . . . (8.13)

In frequency domain, upsampling by 2 corresponds to repeating the spectrum twice.
This follows by

uf (k) =
2n−1∑

i=0

u(i)e−2πj
ik
2n (8.14)

=
n−1∑

`=0

u(2`)e−2πj
2`k
2n (8.15)

=

n−1∑

`=0

x(`)e−2πj
`k
n (8.16)

=
n−1∑

`=0

x(`)e−2πj`
kmodn

n (8.17)

= xf (kmodn), k = 0, . . . , 2n− 1. (8.18)

8.3.2. Filtering

Filter h
u = u0u1 . . . un−1 y = y0y1 . . . yn−1
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Figure 8.3.
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Suppose we have a signal u and a filter h. The circular convolution of u and h is

(u ? h)i =
n−1∑

k=0

hku(i−k)modn, i = 0, 1, . . . , n− 1. (8.19)

Circular convolution in time domain corresponds to multiplication in frequency domain,
i.e.,

yf (k) = uf (k)hf (k), k = 0, 1, . . . , n− 1. (8.20)

The PSD of a filtered signal is given by

Syy(k) = Suu(k)|hf (k)|2, k = 0, 1, . . . , n− 1. (8.21)

8.3.3. Downsampling

2↓
y = y0y1 . . . y2n−1 d = d0d1 . . . dn−1

Downsampling corresponds to dropping the odd samples:

d(i) = y(2i), i = 0, 1, . . . , n− 1. (8.22)

In frequency domain, the spectrum df is the sum of spectrum yf from 0 to n − 1 and
yf from n to 2n− 1, i.e.,

df (k) =
1

2
[yf (k) + yf (k + n)], k = 0, 1, . . . , n− 1. (8.23)

This can be seen by the following derivation:

d(i) = y(2i) (8.24)

=
1

2n

2n−1∑

k=0

yf (k)e2πj
2ik
2n (8.25)

=
1

2n

[
n−1∑

k=0

yf (k)e2πj
ik
n +

n−1∑

k=0

yf (k + n)e2πj
i(k+n)
n

]
(8.26)

=
1

2n

[
n−1∑

k=0

yf (k)e2πj
ik
n +

n−1∑

k=0

yf (k + n)e2πj
ik
n

]
(8.27)

=
1

n

n−1∑

k=0

1

2
[yf (k) + yf (k + n)]e2πj

ik
n , i = 0, . . . , n− 1. (8.28)
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8.3.4. Intersymbol Interference

Suppose now the samples of a random signal X = X0X1, . . . , Xn−1 have zero mean
and variance σ2, however, the PSD is not constant, i.e., the signal is not white. By
Section 8.2.3, this implies that the samples are not independent, which is often called
inter symbol interference (ISI).

The PSD provides us with a simple test for the presence of ISI. Suppose the trans-
mitted signal x in Figure 8.2 is white. Then, if the PSD of the reconstructed signal d at
the receiver is not constant, then we know that d is corrupted by ISI. In other words, a
constant PSD is a necessary condition for the reconstruction of white signals.

8.4. Filter Design by End-to-End Training

In this section, we discuss the end-to-end training w.r.t. the CE loss of a communication
system as in Figure 8.1 in presence of a low pass filter as introduced in Section 8.1.1.

8.4.1. Filter

Linear
Neuron

Batch
Normalization

Linear Filter

class LinearFilter(torch.nn.Module):
def __init__(self, num_taps):

super().__init__()
self.conv = torch.nn.Conv1d(in_channels=1,

5 out_channels=1,
kernel_size=num_taps,
padding='same',
bias=False)

def forward(self, y):
10 y = self.conv(y.reshape(1, 1, -1)).reshape(-1)

return 1 / torch.sqrt(torch.mean(y**2)) * y

At transmitter and receiver, we consider linear filters with output normalized to power
1. As we have several trainable devices in our transceiver chain, the output normaliza-
tion helps to avoid arbitrarily scaled intermediate signals, which would be difficult to
interprete. The filter implementation is differentiable, and by passing

LinearFilter.parameters()

to the optimizer, the linear neuron is trainable. Note that the bias is set to zero, to
avoid direct current (DC) components in the output signal.
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8.4.2. Transmitter

8-ASK
Mapper

2↑ Transmit
filter g

/
message a

n

x
/
n

u
/

2n

y
/

2n

We consider an 8-ASK mapper that maps the message a ∈ {0, 1, . . . , 7} to the 8-ASK
constellation X = {±1,±3,±5,±7}. The message will be passed as label to the CE loss
function, which we indicate by the color blue. The mapper output is then upsampled
with oversampling factor 2 and filtered by the transmit filter, which is an instance of
the linear filter as discussed in Section 8.4.1. Of the transmitter chain, the transmit
filter needs to be trainable, while the other devices before the filter don’t require to
be implemented differentiable, as the loss gradient will be backpropagated only until
reaching the transmit filter.

In the figure, we show the PSD of the signals at the transmitter after training. We plot
against the frequency slot k, and we chose for x a frequency resolution of nperseg = 100
and for the upsampled signals u,ytx, we chose nperseg = 200, so that we can display the
signals before and after upsampling in the same plot. For using other frequency units
for the horizontal axis, see Section 8.2.4. Note that for putting the low frequencies in
the middle, we would need to shift x to the left by 50, and the upsampled signals by
100.

8.4.3. Channel

Low pass
filter f

+

z ∼ N (0, σ2)

/
ytx

2n

ych

/
2n
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The channel consists of a low pass filter followed by additive Gaussian noise. All de-
vices in the channel chain must be differentiable, as the loss gradient is backpropagated
through the channel to the transmitter.

We observe that while the low pass filter f completely attenuates the high frequencies,
the chanel output signal ych has high frequency components, indicated by the PSD value
slightly below 25 dB. This is the noise floor due to the noise added after filtering.

8.4.4. Receiver

Receive
Filter h

2↓ Normalize
to E(|X|2) Demapper/

ych

2n

yrx

/
2n

d
/
n

`
/

n× 8

The receive filter is an instance of the linear filter discussed in Section 8.4.1. After
downsampling, we normalize to the power of the transmitted signal x, to facilitate the
comparison between the reconstruction d and the original signal x. As demapper, we
use a linear NN outputting 8 log probabilities `, one for each possible message value.
The demapper output will be passed as prediction to the CE loss function, which we
indicate by the color blue. Both the receive filter and the demapper are trainable. All
devices in the receiver chain must be implemented differentiable, as the loss gradient is
backpropagated through the channel to the transmitter.
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In the figure, we show the PSD of the signals after training. To illustrate the effect of
downsampling, we also display by a dashed line the PSD of the filtered signal yrx shifted
by 100 (see also the discussion in Section 8.3.3). We observe that the downsampled
signal d has a flat PSD similar to the PSD of the transmitted signal x (See also the
discussion in Section 8.2.3).
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8.5. Further Reading

[1] treats the DFT in Chapter 4, the PSD in Section 8.4 and interpolation and sampling
in Chapters 9 and 11. Welch’s method for PSD estimation was originally published in [2].
In [3], mapper and interpolation filter are trained end-to-end in an autoencoder-based
communication system.

References

[1] P. Prandoni and M. Vetterli, Signal Processing for Communications. 2008.

[2] P. Welch, “The use of fast Fourier transform for the estimation of power spectra: A
method based on time averaging over short, modified periodograms,” IEEE Trans.
Audio Electroacoustics, vol. 15, no. 2, pp. 70–73, 1967.

[3] T. Uhlemann, S. Cammerer, A. Span, S. Dörner, and S. ten Brink, “Deep-learning
autoencoder for coherent and nonlinear optical communication,” in In Proc. ITG-
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8.6. Problems

Problem 8.1. (PSD and white signals)

1. Implement the PSD estimator (8.9).

2. Sample the length n = 100, 1000, 10 000 time signal x with independent normal
Gaussian entries. For each signal length n and nperseg = 100, plot its PSD using
nseg = n/nperseg segments of length nperseg = 100.

3. Consider now the signal y with

yi = xi + 0.5 · x(i−1)modn. (8.29)

Are the entries of y independent?

4. Plot the PSD of y for nperseg = 100 and n = 100, 1000, 10 000. Can you decide
from the PSD if the entries of y are independent?

5. Compare the plots of 2. and 4. to using

from scipy import signal
_, Syy = signal.welch(y, nperseg=nperseg, return_onesided=False)

Problem 8.2.

1. Carry out the end-to-end filter design described in Section 8.4 and plot the PSDs
of the filtered signals.

2. Remove the low pass filter from the channel. Retrain the system and plot the
PSDs of the filtered signals.

3. Exchange the low pass filter in the channel by interference as described in Sec-
tion 8.1.2. Retrain the system and plot the PSDs of the filtered signals.

4. Exchange the low pass filter in the channel by the pilot tone as described in Sec-
tion 8.1.3. Retrain the system and plot the PSDs of the filtered signals.
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9. Deterministic Channel Modeling

Mapper 2↑ Transmit
filter

tanh
Receive

filter
2↓ AWGN Demapper

Message

a ∈ {0, 1, . . . ,M − 1}
log probs

` ∈ RM

to be modelled by trainable subsystem

Figure 9.1.: Communication system example. To train the transmitter-sided mapper,
we substitute the inner subsystem by a differentiable model, which allows
us to backpropagate the loss gradient through the model to the transmitter.

As we have seen in Chapter 7, for end-to-end training of transmitter components, we
must backpropagate the loss gradient to the transmitter through the inner subsystem,
which may consist of the transmitter frontend, the channel, and the receiver frontend.
This backpropagation requires the inner subsystem to support automatic differentiation,
which is often not the case. For instance, the subsystem of interest may be available
only as a non-differential implementation. In some cases, the software providing the
subsystem may be available to us only in compiled form, with no access to the source
code. In another scenario, the subsystem may not be available as a runable software
at all, but only in the form of input and output sequences recorded in a transmission
experiment.

In this chapter, we identify the basic challenges of subsystem modeling and how they
can be handled. To this end, we focus on setups similar to the system in Figure 9.1.
Specifically, we model a subsystem implemented in software, and we assume we can
run it as often as we want. In particular, we assume that we can freely choose input
sequences, transmit them over the subsystem, and record the output sequence. This
allows us to try out different types of input sequences and obtain insights about which
sequences are best suited for learning a representative model.

9.1. Noisy Channel Modeling Challenge

f g

f̂

x y x̂

x ŷ

The basic channel modeling task is as follows: for a channel f , find a surrogate channel
f̂ , so that f̂(x) ≈ f(x), for all input values x of interest. Note how this differs from

© 2020, 2021, 2022 Georg Böcherer, georg.boecherer@tum.de. Version 0.2, 2022-01-14
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Mapper
Deterministic
Surrogate

AWGN Demapper
Message

a ∈ {0, 1, . . . ,M − 1}
log probs

` ∈ RM

Figure 9.2.: Differentiable subsystem model consisting of a deterministic model followed
by Gaussian noise. Note that the noise source is placed after the determin-
istic model, in difference to the original subsystem, where the noise source
is followed by the receive filter and downconversion. This may result in dif-
ferences between the original subsystem and its model.

equalization, which we considered in previous chapters. In equalization, for a channel
f , we want to find g so that g(f(x)) ≈ x, i.e., g ≈ f−1. In other words, while channel
modeling tries to imitate a channel, equalization tries to invert it.

The task of imitating a given channel can be intricate. Consider the subsystem in
Figure 9.1. We observe that the subsystem f of interest contains a noise source. In
particular, f(x) is random, also for known input x. In particular, x1 = x2 does not
imply f(x1) = f(x2). Thus, the requirement for surrogate f̂ is not exactly f̂(x) = f(x),
rather, f̂(x) and f(x) should be “similar enough”.

9.2. Deterministic Channel Surrogate

Assume now that the channel surrogate f̂ is deterministic, so that also f̂(x) is determin-
istic and x1 = x2 implies f̂(x1) = f̂(x2), a property that the original noisy channel does
not have. Thus, the deterministic surrogate f̂ does not model well the noisy channel
f . We therefore consider a channel surrogate that consists of a deterministic surrogate
followed by additive noise, i.e., our surrogate is

f̂(x) = f̂d(x) + Z (9.1)

where f̂d is deterministic and Z is zero mean Gaussian noise.

f̂d N (0, σ2)
x ŷd ŷ

channel surrogate f̂

channel f
x y

In Figure 9.2, we display the system from Figure 9.1 with the inner subsystem replaced
by a surrogate channel.

For training the surrogate channel, we use training sequences

xn = x0x1 . . . , xn−1 (9.2)

yn = y0y1 . . . yn−1, yi = f(xi) (9.3)

and we learn the channel surrogate in two steps:
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1. We train the deterministic surrogate f̂d w.r.t. MSE:

f̂d = arg min
f̂d

1

n

n−1∑

i=0

|yi − f̂d(xi)|2 (9.4)

2. We estimate the variance of the residual error yi − f̂d(xi):

σ̂2 =
1

n

n−1∑

i=0

|yi − f̂d(xi)|2. (9.5)

Note that the variance σ̂2 of the residual error is exactly the MSE after training
fd.

9.3. Linear Channel Surrogate

Suppose now we consider an affine surrogate. For a memoryless scalar channel, f̂d(x) =
a · x+ b (for b 6= 0, f̂d is affine and for b = 0, f̂d is linear) and the MSE is

1

n

n−1∑

i=0

|yi − a · xi − b|2. (9.6)

For channels where inputs x and outputs y are column vectors with r and c entries,
respectively, the affine surrogate is

f̂d(x) = Ax+ b, A ∈ Rc×r, b ∈ Rc. (9.7)

For a scalar channel with memory, we may use as surrogate channel a linear filter a with
m entries so that

fd(xi) = (a ? x)i + b. (9.8)

Linear channel surrogates linearize the channel in the neighborhood of xn. Therefore,
we should choose the training sequence xn similar to the signal of interest. For instance,
we may use for xn an appropriately scaled M -ASK signal, i.e.,

xi = λx̃i, x̃i ∈ {±1,±3, . . . ,±(M − 1)}
i = 0, 1, . . . , n− 1. (9.9)

In other words, to train linear channel surrogates, the important property of the training
sequences is the range in which the values lie, rather than how finely this range is sampled
by the entries of the training sequence (as we will see, this is different for non-linear
channel surrogates). In summary,

� Linear channel surrogates may yield a good approximation in the neighborhood of
the training sequence xn.
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� The approximation may be bad outside of the neighborhood of xn, if the original
channel is non-linear.

� If the original channel is linear, then the linear channel surrogate can be very good,
even outside of the neighborhood of xn. Thus, in principle, it can generalize well
to unseen data.

9.4. Non-Linear Channel Surrogate

For a non-linear surrogate, the MSE is

1

n

n−1∑

i=0

|yi − fd(xi)|2. (9.10)

Suppose now the training sequence takes values in a finite set X (e.g., an ASK constel-
lation), as we may use to train linear surrogates. We can now write the MSE as

1

n

n−1∑

i=0

|yi − fd(xi)| =
1

n

∑

x∈X

∑

i : xi=x

|yi − fd(x)|2. (9.11)

Minimizing this objective, the surrogate may approximate the original channel f very
well for x ∈ X , but the approximation may be arbitrarily bad elsewhere! As counter-
measure, we should therefore sample the training sequence continuously from R. Of
course, a training sequence of length n has at most n distinct values, which is far from
continuous. Fortunately, most of the common non-linear activation functions like ReLU
and tanh are continuous function, which comes to our rescue here. Besides the require-
ment to sample finely, the range of the training samples is also important. We need to
ensure that the training sequence covers the range of interest, or rather exceeds it at
least slightly, as a non-linear surrogate may generalize arbitrarily poorly to unseen data.
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9.5. Further Reading

In [1, Section II.C], training sequences for learning channel surrogates are discussed.

References

[1] A. Smith and J. Downey, “A communication channel density estimating genera-
tive adversarial network,” in IEEE Cognitive Commun. Aerosp. Appl. Workshop
(CCAAW), 2019.
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9.6. Problems

In this promblem set, we consider the non-linear channel

Y = f(X) = tanh(X) + Z (9.12)

where Z is zero mean Gaussian with variance σ2 = 7× 10−3. We model the channel by

Ŷ = g(X) + Ẑ (9.13)

where g is a deterministic function and Ẑ zero mean Gaussian with variance σ̂2.
Problem 9.1. Let X be a real random variable and define

g(X) = arg min
a∈R

E
[
|a− f(X)|2

∣∣X
]
. (9.14)

1. Show that g(X) = tanh(X).

2. Show that the residual error Ẑ = g(X) − f(X) is zero mean Gaussian with vari-
ance σ2.

Problem 9.2. (Linear model)

1. Implement g as a linear neuron.

2. Use the 4-ASK alphabet X = {±1,±3}. Sample x̃n = x̃0 . . . x̃n−1 uniformly from
X and generate the input and output sequences

xn = 0.2 · x̃n, yi = f(xi), i = 0, . . . , n− 1. (9.15)

Train your linear model g using xn as input and yn as target output using the
MSE loss function on g(xn) and yn.

3. For your trained model, plot g(x) and tanh(x) for x ∈ [−2, 2]. In which range of x
does g approximate tanh well?

Problem 9.3. (Non-linear model)

1. Implement g by a non-linear NN using several hidden layers with RelU activation.

2. Repeat the steps of Problem 9.2 for your non-linear model. How well does g
approximate tanh?

3. Repeat the steps of Problem 9.2 for your non-linear model using, using for xn zero
mean Gaussian samples with variance equal to the variance of xn in Problem 9.2.
How well does g approximate tanh now?

Problem 9.4. (Model-based transmitter design) We revisit Problem 7.2.

1. Train a mapper following Problem 7.2 using your model from Problem 9.3.

2. Evaluate your mapper on the true channel. How does it’s performance compare
to the performance of a mapper that is directly trained on the true channel?
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10. Stochastic Channel Modeling

To model a noisy channel, we introduced in the last chapter a pragmatic approach:
we first learn a deterministic model, and we then add noise, which models the residual
error of the deterministic model. As we learn the deterministic model using MSE loss,
the residual error has zero mean. We estimate the variance of the residual error and we
then model the noise as zero mean Gaussian with that variance, i.e.,

Z ∼ N (0, σ̂2). (10.1)

This is a parametric model, with the parameter σ2, and to then generate such noise,
we need a random number generator that accepts this parameter and then generates
Gaussian random variables accordingly.

In this chapter, we consider a non-parametric approach, i.e., we want to learn a noise
source from data. More specifically,

� We assume we have some source of randomness, e.g., a random number genera-
tor from which we can sample sn, where the si are independent and uniformly
distributed.

� We want to learn a fake source via learning a deterministic transformation f , so
that ẑn = f(sn) statistically has the desired properties.

� We estimate the desired properties from our observation zn of the true source.
These properties can be any values that we can estimate from zn, for instance,
mean, variance, and higher moments.

� We would like to have a loss function to which we can pass samples zn from the
true source and samples ẑn from the fake source, and which make the fake source
look like the true source after convergence.

This is an active field of research and significant progress has been made in the last
years, see Section 10.3 for some references.

We will next take a close look at how this can be realized when the true source is in
fact a Gaussian density.

© 2020, 2021, 2022 Georg Böcherer, georg.boecherer@tum.de. Version 0.2, 2022-01-21
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10.1. Principle of Maximium Entropy

So far, we have defined the Gaussian density formally via the formula

pZ(z) =
1√

2πσ2
e−

z2

2σ2 . (10.2)

To see how we can learn a Gaussian source, we may look for an operational definition. For
instance, the central limit theorem [1] provides one operational definition of the Gaussian
density. As we are interested in modeling communications channel, we will consider an
information-theoretic operational definition based on the principle of maximum entropy
(PME) [2]:

“The principle of maximum entropy states that the probability distri-
bution which best represents the current state of knowledge about a system
is the one with largest entropy, in the context of precisely stated prior data
(such as a proposition that expresses testable information).”

As the Gaussian source we want to learn is a continuous random variable, “probability
distribution” in the PME is in our case a probability density function and accordingly,
“entropy” is differential entropy, which we are defining next.

10.1.1. Differential Entropy

For a probability density function pX on Rd, differential entropy [3, Chapter 8] is defined
as

h(pX) = E[− log pX(X)] (10.3)

=

∫
pX(t)[− log pX(t)] dt. (10.4)

By Problem 10.2, the differential entropy of a Gaussian is

Z ∼ N (µ, σ2), h(pZ) =
1

2
log(2πeσ2) (10.5)

in particular, the differential entropy does not depend on the mean.

10.1.2. Towards a Loss Function for Learning Gaussian Noise

In our case, the “precisely stated prior data” in the PME consists in mean and variance,
i.e.,

E(Z) = 0, E(Z2) = σ2 (10.6)

and according to the PME, the density we are looking for is

p = arg max
p : E(Z)=0, E(Z2)≤σ2

h(p). (10.7)
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We claim that a zero mean Gaussian density with variance σ2 solves this problem. To
show this, we use the information inequality in the form

D(pY ‖pZ) = E
[
log

pY (Y )

pZ(Y )

]
≥ 0 (10.8)

with equality if and only if pY = pZ . The information measure D(pY ‖pZ) is called
informational divergence, also known as Kullback-Leibler divergence.

Let now pZ be zero mean Gaussian and let pY be any other zero mean density and
assume that both pZ and pY have variance σ2. We have

D(pY ‖pZ) = E
[
log

pY (Y )

pZ(Y )

]
(10.9)

= E [− log pZ(Y )]− h(pY ) (10.10)

= E
[
Y 2

2σ2
log(e)

]
+

1

2
log(2πσ2)− h(pY ) (10.11)

=
1

2
log(2πeσ2)− h(pY ) (10.12)

≥ 0 (10.13)

By the information inequality (10.8), we have equality in (10.13) if and only if pY = pZ ,
which proves that among all densities with variance σ2, the Gaussian density achieves
the maximum differential entropy, and this maximum is equal to 1

2 log(2πeσ2).
Line (10.11) provides us an alternative formulation of the optimization problem. Let’s

drop now the restriction that the variance of pY should be equal to σ2. Still, by the
information inequality (10.8)

E
[
Y 2

2σ2
log(e)

]
+

1

2
log(2πσ2)− h(pY ) ≥ 0 (10.14)

with equality iff pY = pZ . As we know by now that pZ solves (10.7), we can now
minimize the left-hand side of (10.14) to solve (10.7). We have

pZ = arg min
pY : E(Y )=0

log(e)

2σ2
E(Y 2) +

1

2
log(2πσ2)− h(pY ) (10.15)

= arg min
pY : E(Y )=0

log(e)

2σ2
E(Y 2)− h(pY ). (10.16)

The last line is almost the loss function we are looking for. We can replace E(Y 2) by an
empirical expectation, however, we need to find a way for how to estimate the differential
entropy h(pY ) from a sample sequence yn. We will do exactly that in the next section.

10.2. Differential Entropy Estimator

In this section, we summarize the nearest neighbor differential entropy estimator as
analyzed in [4]. To stay close to [4], we describe the estimator a bit more general then
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Dimension d Volume of a ball of radius R Volume of the unit ball

0 V0(R) = 1 V0 = 1
1 V1(R) = 2R V1 = 2
2 V2(R) = πR2 V2 = π

Table 10.1.: Volumes of low dimensional Euclidean balls.

what we will actually need. That is, we consider the general k-nearest neighbor, while
in our implementation, we use the nearest neighbor (k = 1).

10.2.1. Volume of a Euclidean Ball

The d-dimensional volume of a Euclidean ball of radius R in d-dimensional Euclidean
space is [5]:

Vd(R) =
π
d
2

Γ(d2 + 1)
Rd. (10.17)

In Table 10.1, we display the first few low dimensional volumes. We denote the volume
of a unit ball with radius 1 by

Vd = Vd(1). (10.18)

In [4], [6] the Euclidean ball of radius R around x and its volume are denoted by

B(x, R) = {z : ‖z − x‖2 ≤ R} (10.19)

λ(B(x, R)) = Vd(R). (10.20)

10.2.2. k-Nearest Neighbor

Let y(k)(x) be the k-th nearest neighbor of x among y1, . . . ,yn, i.e.,

‖y(1)(x)− x‖2 ≤ ‖y(2)(x)− x‖2 ≤ · · · ≤ ‖y(n)(x)− x‖2. (10.21)

10.2.3. d-dimensional Data

We consider n samples x1,x2, . . . ,xn, where each sample is a d-dimensional vector with
d entries, i.e.,

xi ∈ Rd = R×R× . . .R︸ ︷︷ ︸
d times

, i = 1, . . . , n. (10.22)
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10.2.4. Density Estimator

By [6, Definition 3.1], the k-nearest neighbor density estimate from n d-dimensional
samples y1, . . . ,yn is defined by

f (k)n (x) =
k

n · Vd ·
∥∥y(k)(x)− x

∥∥d
2

(10.23)

Example 10.1. For k = 1 and d = 1, the nearest neighbor density estimate is

fn(x) =
1

n · 2 · |y(1)(x)− x| . (10.24)

10.2.5. Differential Entropy Estimator

By [4, Section 1], the principle of differential entropy estimation is as follows. Let pX
be the actual density and p̂ an approximation of pX . Then,

h(pX) = E[− log pX(X)] ≈ 1

n

n−1∑

i=0

− log pX(xi) (10.25)

≈ 1

n

n−1∑

i=0

− log p̂(xi). (10.26)

We now use the k-nearest neighbor estimate for p̂. The following observation requires
attention:

We use x1,x2, . . . ,xn both for estimating p̂ as well as for evaluating p̂.

To account for this, for each i = 1, . . . , n, we estimate p̂(xi) using the other samples xj ,
j 6= i, i.e., samples from the punctured set

Xi = {x1, . . . ,xi−1,xi+1, . . . ,xn} . (10.27)

Let Ri,k be the distance of xi to its k-nearest neighbor in Xi. The density estimate is
then

p̂(xi) =
k

n · Vd ·Rdi,k
(10.28)

and the entropy estimate becomes

h(pX) ≈ 1

n

n−1∑

i=0

(
− log

k

n · Vd ·Rdi,k

)
(10.29)

=
1

n

n−1∑

i=0

log
(n
k
· Vd ·Rdi,k

)
(10.30)

(10.31)
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import torch
from mlcomm import estim

n = 10_000
5 d = 4

x = torch.randn(n, d)
h_hat = estim.differential_entropy_estimator_dD(x)

https://gitlab.lrz.de/gb/mlcomm

Figure 10.1.: mlcomm.estim.differential entropy estimator dD implements
the Kozachenko-Leonenko estimator for k = 1, i.e., using the nearest neigh-
bor. The differential entropy estimate is differentiable and can be used in
loss functions, for instance, in the loss function (10.16) that we derived for
learning Gaussian noise.

By [4] the Kozachenko-Leonenko entropy estimator is given by

ĥn,k(x
n) = log k − ψ(k) +

1

n

n−1∑

i=0

log
(n
k
· Vd ·Rdi,k

)
(10.32)

where log k − ψ(k) is a bias-correcting term and ψ is the digamma function [7] with

ψ(1) = −γ (10.33)

γ =

∫ ∞

0
e−t ln tdt. (10.34)

The value γ is called the Euler-Mascheroni constant [8].

Example 10.2. For k = 1 and d = 1, the Kozachenko-Leonenko entropy estimator
becomes

ĥn,1(x
n) = log 1− ψ(1) +

1

n

n∑

i=1

log
(n

1
· V1 ·R1

i,1

)
(10.35)

= γ +
1

n

n∑

i=1

log (n · 2 ·Ri) (10.36)

which recovers [9, Eq. (18)]. Note that Ri := R1
i,k is given by

Ri = arg min
x∈Xi

|x− xi|. (10.37)

In Figure 10.1, we refer an implemtation of the estimator for k = 1 and any dimension
d.
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10.3. Further Reading

The learning of fake noise is an example of deep generative modeling. A landmark
paper is [10], which introduces the generative adversarial network (GAN). In [11] and
many other works, GANs have been used for modeling communication channels. A
GAN consists of a generator and a discriminator. In Problem 10.4, we implement such
a discriminator for assessing the quality of our trained fake source.
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10.4. Problems

Problem 10.1. (Linear filter recap) Consider the filter

h = (0, 0, 3, 2, 1). (10.38)

1. Implement a function that realizes the circular convolution h ? x for a length n
input vector x.

2. Realize the circular convolution from 1. using an NN with a linear layer provided by
torch.nn.Linear. Verify the correctness of your implementation by comparing
your implementation from 1. for several test sequences x.

3. Realize the convolution from 1. using an NN with a convolutional layer provided by
torch.nn.Conv1d. Is this convolution circular? Test against 1. and 2. Where
in the output sequence do the sequences differ?

Problem 10.2. (differential entropy)

1. Show that the differential entropy of a Gaussian random variable Z ∼ N (µ, σ2) is
given by h(pZ) = 1

2 log(2πeσ2).

Problem 10.3. (differential entropy estimation) Sample n = 10 000 vectors z0, z1, . . . ,zn−1,
each with d entries from a zero mean Gaussian density pX with covariance matrix σ2 ·I,
where I is the d× d identity matrix.

1. What is the differential entropy of the d-dimensional random vector X?

2. Plot the differential entropy for d = 1, 2, 3, 4 and σ2 = 0.1, 0.2, . . . , 1.

3. Use the differential entropy estimator

mlcomm.estim.differential entropy estimator dD

from https://gitlab.lrz.de/gb/mlcomm to estimate the differential en-
tropy from the sample sequences zn.

Problem 10.4. (fake Gaussian source) In this problem, you will implement an NN that
transforms a uniform random variable into fake Gaussian noise.

1. Implement a nonlinear NN f with scalar input and scalar output. As input to
this network, sample un from a density pU that is uniform on [0, 1]. You can use
torch.rand(n, 1). Plot a histogram of the output ẑn = f(un) of the initialized
NN and compare it with the histogram of samples zn from a zero mean Gaussian
density with variance σ2 = 1.

2. Train your network using as loss the MSE. Plot the histogram. Can you explain
the trained f mathematically?
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3. To enforce the required mean and variance. Train your network using as loss

|E(Ẑ)|2 + |E(Ẑ2)− σ2|2 (10.39)

In your implementation, replace probabilistic expectation E(·) by empirical expec-
tation. (You can also try using | · | instead of | · |2 in the above loss). Plot the
resulting histogram.

4. Train now your network using the loss (10.16), i.e.,

|E(Ẑ)|2 +
log(e)

2σ2
E(Ẑ2)− h(Ẑ) (10.40)

where we have added |E(Ẑ)|2 to enforce zero mean. In your implementation re-
place probabilistic expectations by empirical expectations and use the differential
entropy estimator from Problem 9.3.3 to estimate h(Ẑ).

5. We now want to assess how good our fake source is. To this end, we train a
discriminator using the BCE loss on LPRs. The discriminator is a non-linear
network with scalar input and scalar output. As we use the BCE on LPRs, the
output layer is linear.

a) Training: We feed the discriminator with sequences zntrue from the true source
with label b = 1, and sequences znfake from our fake source with label b = 0.
Denoting the discriminator output by `, the cost can be calculated by

BCElog(b
2n, `2n) =

1

2n

2n−1∑

i=0

bcelog(bi, `i) (10.41)

= 0.5 · 1

n

n−1∑

i=0

bcelog[0, `(zfake,i)] + 0.5 · 1

n

n−1∑

i=0

bcelog[1, `(ztrue,i)]. (10.42)

b) Evaluation: calculate the probability PB|Z(0|z) from the tained discriminator
output and plot z against PB|Z(0|z). For which values of z can the discrimi-
nator not distinguish between true and fake?

c) Evaluation: estimate H(B|Z) using the trained discriminator. What would
be the value of H(B|Z) for a perfect fake source? How much in bits is our
fake source different from a perfect fake source?
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11. Filters with Memory

So far, we have considered filters with a finite number of taps. Such filters are also
called finite impulse response (FIR) filters. For instance, to equalize or demap the ith
sample, the filter processes not only its observation of the noisy ith sample, bu also npre
predecessors and npost successors, where ntaps = 1 + npre + npost. In certain situations,
the dependence of the current sample on past and future observations can be realized
more efficiently, in particular, if this dependency extends far into the past and/or far
into the future, which would require a filter with a very large number of taps.

11.1. Recursive Filter

Suppose sequence y = . . . y−1y0y1 . . . is transmitted over a channel and x = . . . x−1x0x1 . . .
is received, where

xi = yi + αyi−1. (11.1)

Our aim is to recover y from x.

First Attempt We first use an FIR filter. We solve (11.1) for yi. We have

yi = xi − αyi−1
= xi − α(xi−1 − αyi−2)
= xi − α(xi−1 − α(xi−2 − αyi−3))
= xi − α(xi−1 − α(xi−2 − α(xi−3 − αyi−4)))
= xi − αxi−2 + α2xi−2 − α3xi−3 + · · ·

=
∞∑

j=0

xi−j (−α)j︸ ︷︷ ︸
=:hj

= (x ? h)(i)

We observe that h is actually not an FIR filter, as it is the infinitely long filter

h = (1,−α, α2,−α3, . . . ). (11.2)

Such filters are called infinite impulse response (IIR) fitelrs. We observe that if α < 1,
then the filter coefficients vanish. We therefore may truncate h to finite length, i.e., an
FIR filter. Note, however, that truncating h leads to an approximation error, i.e., with
an FIR filter, we can only approximately recover y from x.

© 2020–2022 Georg Böcherer, georg.boecherer@tum.de. Version 0.2, 2022-02-08
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Second Attempt We again solve (11.1) for yi and get

yi = xi − αyi−1.

We note that at time instant i, xi is the filter input and yi the desired filter output.
Correspondingly, yi−1 is the desired filter output at time instant i. Define now the filter
function f by

f(xi) = xi − αf(xi−1). (11.3)

This defines a recursive filter. Assuming that f(x0) = y0, this recursive filter allows us
to perfectly recover x0x1 . . . from y0y1 . . . .

11.2. Recursive Filter as Filter with State

We now specify a recursive filter by a filter with state as follows.

� Input x, output y, state h.

� Update state:

h = fh(x, h) (11.4)

� Update output:

y = fy(h) (11.5)

The updates of state and output are executed in this order, i.e., we first update the state
and then the output.

Example 11.1. Consider the state and output updates

fh(x, h) = x− αh (11.6)

fy(h) = h. (11.7)

By these update rule, we have

yi = hi (11.8)

= xi − αhi−1 (11.9)

= xi − αyi−1. (11.10)

That is, the state and output updates implement (11.3).
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11.2.1. Initialization

With time index t, the update rules are

ht = fh(xt, ht−1) (11.11)

y = fh(ht). (11.12)

If we start at time t0, we must choose some initial value for state ht0−1.

� At the beginning of time, we may choose ht0−1 = 0 (or any other reasonable value).

� If we process a sequence in chunks, we may use the last state from the previous
chunk as initial state for the current chunk.

11.3. pytorch’s RNN: Elman Network

pytorch provides recursive neural networks (RNNs) [1], which implement the update
rules

ht = g(Wihxt + bih +Whhht−1 + bhh)

yt = f(ht)
(11.13)

where

� i refers to input.

� t is the time index.

� h refers to hidden.

� g is the activation function, supported are tanh and relu.

� weights Wih,Whh.

� bias bih, bhh.

RNNs of the kind (11.13) are also called Elman networks [2].
We can stack several RNN layers: the output of layer j becomes the input of layer

j + 1.
An unidirectional RNN has one state sequence, where state ht is updated based on

state ht−1. A bidirectional RNN has two state sequences where the first sequence is
updated in forward direction (h1t is updated based on h1t−1) and the second sequence is
updated in backward direction (h2t−1 is updated based on h2t ).
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11.4. Further Reading

The effectiveness of RNNs for certain equalization problems has already been observed
almost 30 years ago [3]. More recently, RNNs have been applied for equalization and
demapping in optical communications, e.g., in [4].

References

[1] [Online]. Available: https://pytorch.org/docs/stable/generated/
torch.nn.RNN.html.

[2] [Online]. Available: https : / / en . wikipedia . org / wiki / Recurrent _
neural_network\#Elman_networks_and_Jordan_networks.

[3] G. Kechriotis, E. Zervas, and E. S. Manolakos, “Using recurrent neural networks
for adaptive communication channel equalization,” IEEE Trans. Neural Netw.,
vol. 5, no. 2, pp. 267–278, 1994.
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11.5. Problems

Problem 11.1. (Recursive Filter) For n = 100 000, consider a BPSK sample sequence
xn where the entries xi are sampled independent and uniformly distributed on {−1, 1}.
The sequence is filtered and the filter output yn is observed, where

yi = xi + αxi−1, i = 0, 1, . . . n− 1 (11.14)

with α = 0.5. For initialization, we assume x−1 = xn−1. Our goal is to recover xn from
yn.

1. Plot the PSD of xn and yn.

2. Show that the recursive filter f(yi) = yi − αf(yi−1) recovers xn.

3. Implement the recursive filter. How does the residual error f(yi) − xi look like
when you initialize with f(yi−1) = 0 and f(yi−1) = xi−1.

4. Implement the recursive filter in an NN by using one linear layer with 2 inputs
and one output. Train the NN and evaluate the residual error for initializing with
f(yi−1) = 0 and f(yi−1) = xi−1.

5. Implement the recursive filter by using torch.nn.RNN with

input_size = 1
hidden_size = 1
num_layers = 1
nonlinearity = 'tanh'

Train the NN and evaluate the residual error for initializing with f(yi−1) = 0 and
f(yi−1) = xi−1.

Problem 11.2. (Colored Noise) Consider a sampled BPSK sequence xn. A channel
adds colored noise, i.e.,

yi = xi + zi, i = 0, . . . , n− 1 (11.15)

zi = z̃i + α · z̃i−1 (11.16)

z̃−1 = z̃n−1 (11.17)

where the z̃i are independent zero mean Gaussians with variance σ2 and α = 0.9. Our
goal is to soft demap the bit b = φ(x), where φ(−1) = 0 and φ(1) = 1.

1. What is the variance of Zi? What is the optimal memoryless demapper? (the mem-
oryless demapper assumes that the Zi are independent zero mean Gaussian). Plot
the BER against 1/σ2 in dB over a range of values, e.g., α = 0.05, 0.1, 0.3, 0.5, 1.0.

2. Implement a linear NN demapper with m = 21 filter taps. Train the demapper
and plot the BER curve.
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3. Implement a recursive NN demapper using torch.nn.RNN with input size=1.
Try out several values for hidden size and num layers and try out both
nonlinearity = ’tanh’ and nonlinearity = ’relu’.
Try out bidirectional=False and bidirectional=True. In all cases, ter-
minate the NN with a linear layer. Train the demapper, plot the BER curve, and
compare it to the BER curve of the linear demapper implemented in 2.
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A. Training Neural Networks

In this chapter, we consider the task of traning an NN. Let’s recall the structure
of an NN: It is a network of neurons. Each neuron calculates a sum of its inputs
x = x0x1 . . . xk−1 weighted by the weights w = w0w1 . . . , wk−1, adds a bias b, and
passes this intermediate value through an activation function g. The resulting neuron
output is then the input of succeeding neurons, and so on. Training an NN based on
data x and labels a consists in iteratively updating the parameters wi and b, with the
aim to minimize the cost Λ(a,y), where y is the NN output. At first sight, this sounds
like a complicated task: for instance, standard image recognition networks have millions
of parameters.

The key to translate NN training into a manageable task is to interprete the structure
of NNs as a computational graph and to split the computation of parameter updates
into a series of simple local computations.

In this chapter, we will first interprete the NN output calculation as forward prop-
agation through a computational graph. We will then formulate the gradient descent
algorithm for updating parameters, and we will show how this can be realized by back
propagating the loss gradient through the NN via local computations. Finally, we will
discuss SGD, which enables computationally efficient training.

Thoughout this chapter, we will “think local” and formulate all math in terms of
local computations. Thanks to this approach, the resulting formulas will be surprisingly
simple.

A.1. Forward Propagation

Consider the calculation of the output in a deployed NN. We interprete the NN as
a computational graph on which local computations are performed. Specifically, we
repetitively apply the following local computation until all neurons in the network are
processed:

1. While there are unprocessed neurons:

a) Select an unprocessed neuron.

b) Denote neuron input, weight, bias by x, w, b, respectively.

c) If x is ready:

i. Calculate z1 ← xTw.

© 2020, 2021 Georg Böcherer, georg.boecherer@tum.de. Version 0.2, 2021-11-25
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ii. Calculate z2 ← z1 + b.

iii. Calculate output y = g(z2).

iv. Mark neuron as processed and output y as ready.

Because of the layered structure of an NN, we can also define a specific schedule. For d
layers,

� For i = 0, 1, . . . , d− 1:

– Process all neurons in layer i.

That is, the fresh values propagate in forward direction through the network, and this
is why the output calculation is also called forward propagation.

A.2. Gradient Descent

A.2.1. Derivative

Consider a real-valued function

f : R→ R

x 7→ y = f(x). (A.1)

We represent the function by the graph

f
x y

The derivative of f in a is

dy

dx
(a) := lim

ε→0

f(a+ ε)− f(x)

(a+ ε)− a . (A.2)

The derivative is itself a real function defined on the real line, i.e.,

dy

dx
: R→ R. (A.3)

A.2.2. Minimizing a Real Function by Gradient Descent

Suppose now we want to minimize a real function f . For some initial guess a, we consider
the derivative in a.

1. If dy
dx(a) > 0, then the function value increases when we move slightly to the right

of a, and it decreases if we move slightly to the left of a.

2. If dy
dx(a) < 0, then the function value decreases when we move slightly to the right

of a, and it increases if we move slightly to the left of a.
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This suggests to update a by repeating until convergence

a← a− γ dy

dx
(a), γ > 0. (A.4)

1. Algorithm (A.4) is called gradient descent.

2. The step size γ > 0 in (A.4) is called learning rate.

3. The algorithm has converged to a local minimum a∗ if a∗ remains unchanged under
the update (A.4), i.e., a∗ is a fixed point of the function

h(a) = a− γ dy

dx
(a). (A.5)

This can be seen as follows.

a = h(a) (A.6)

⇔ a = a− γ dy

dx
(a) (A.7)

⇔ dy

dx
(a) = 0. (A.8)

The choice of the (potantially adaptive) learning rate γ is sensitive, we provide references
in Section A.6.

A.3. Backpropagation

We have seen in Section A.1 that the NN output can be calculated by forward prop-
agation. In this section, we will show that the gradient of the loss function w.r.t. a
parameter of interest can be calculated by backpropagation. The two important struc-
tures in the NN computation graph that we need to address are sums of real functions
and chains of real functions.

A.3.1. Sum Rule

Consider the function composition

x +

f

g

z0

z1

y

that is, y is given as the sum of two functions of x via

y = f(x) + g(x). (A.9)

We calculate the derivative dy/dx in a as the sum of two local derivatives by

dy

dx
(a) =

dz0
dx

(a) +
dz1
dx

(a) (A.10)

which is the sum rule for derivatives.
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Back Propagating Through a Sum Suppose in the NN graph, a variable x connects
to variable y via a sum of d functions fi, which defines d variables zi via

zi = fi(x), i = 0, . . . , d− 1. (A.11)

We can now calculate the derivative dy/dx in a by the following algorithm.

1. For i = 0, . . . , d− 1:

� Calculate bi = dzi
dxi

(a).

2. Calculate
∑d−1

i=0 bi. This is the desired derivative dy
dx(a).

A.3.2. Chain Rule

Consider the function composition

f gx z y
h

Suppose that we want to calculate dy/dx in a. We have

dy

dx
(a) =

h(a+ ε)− h(a)

ε
(A.12)

=
g[f(a+ ε)]− g[f(a)]

ε
(A.13)

=
g[f(a+ ε)]− g[f(a)]

ε
· f(a+ ε)− f(a)

f(a+ ε)− f(a)
(A.14)

=
g[f(a+ ε)]− g[f(a)]

f(a+ ε)− f(a)
· f(a+ ε)− f(a)

ε
(A.15)

=
dy

dz
[f(a)] · dz

dx
(a). (A.16)

Thus, we have just established the chain rule

dy

dx
=

dy

dz
· dz

dx
. (A.17)

Back Propagating Through a Chain Suppose now in the NN graph, a forward path
connects variable x to variable y via d functions fi, which defines d+ 1 variables zi via

z0 = x (A.18)

zi = fi−1(zi−1), i = 1, . . . , d (A.19)

y = zd. (A.20)

For instance, for d = 1, we have y = f0(x) and for d = 2, we have y = f1(f0(x)). We
can now calculate dy

dx(a0) by the following algorithm.
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1. (Forward propagation) For i = 1, . . . , d:

� Calculate ai = fi−1(ai−1).

2. Initialize b = 1.

3. (Backpropagation) For i = d, d− 1, . . . , 1:

� c← dzi
dzi−1

(ai).

� b← c · b.

A.3.3. Example: Back Propagating to a Neuron Weight

We illustrate by an example that thanks to the sum rule and the chain rule, computing
gradients of real functions locally is really all we need. Consider the neuron

y = g(xTw + b) (A.21)

with

� input x = x0x1 . . . xk−1.

� weights w = w0w1 . . . wk−1.

� bias b.

� activation function g.

� output y.

Based on data samples xn = x0 . . .xn−1, we want to update weight wj using gradient
descent. To this end, we express the neuron output y as a function of weight wj as
follows.

y =
1

n

n−1∑

i=0

g(xTi w + b) (A.22)

=
1

n

n−1∑

i=0

g
(
xijwj +

∑

r 6=j
xirwr + b

︸ ︷︷ ︸
=:fi(wj)

)
(A.23)

=
1

n

n−1∑

i=0

g[fi(wj)]. (A.24)

Thus, y is indeed a sum of chains of real functions of wj , and the derivative dy/dwj can
be calculated by backpropagation using the sum rule and the chain rule.
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A.4. NN Training

We now consider the use of gradient descent for updating NN parameters based on data.
For label a and NN output y, the loss is λ(a, y) and for n samples an = a0a1 . . . an−1,
yn = y0y1 . . . yn−1, the cost is

Λ(an, yn) =
1

n

n−1∑

i=0

λ(ai, yi). (A.25)

A.4.1. Gradient Descent

To minimize the cost w.r.t. to all parameters w = w0w1 . . . wnparameters−1, we may apply
gradient descent to the cost as follows.

1. Define z = Λ(an, yn).

2. Initialize v.

3. for i = 0, . . . , nepochs − 1:

� for j = 0, . . . , nparameters − 1:

– Calculate vj ← vj − γ dz
dwj

(vj)

An epoch refers to passing the entire data set an, yn one time forward and backward
through the network.

A.4.2. Stochastic Gradient Descent

Calculating the gradient based on the cost Λ(an, yn) requires calculating n times the
derivative of the loss λ(ai, yi), before updating the parameters for the first time. This
may imply unnecessary calculations, e.g., considering only nbatch � n samples (a batch)
at a time may already approximate the derivative well enough for making a parameter
update, i.e., for the first batch,

γ
dΛ(anbatch , ynbatch)

dw
(v) ≈ γ dΛ(an, yn)

dw
(v). (A.26)

By splitting the data set into batches of size nbatch, within one epoch, we would update
the parameters n/nbatch times.

In the extreme case, we could use a batch size of nbatch = 1 and calculate the derivatives
sample by sample, each time updating the parameter, i.e.,

v ← v − γ dλ(ai, yi
dw

(v), i = 0, . . . , n− 1. (A.27)

This way, we would update the paramters n times for each epoch.
Calculating parameter updates based on batches is called SGD and it is widely used

in practice. Some remarks are in place.
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1. The learning rate γ and the batch size nbatch should be chosen together, i.e.,
smaller nbatch increases the variation of the gradient estimate, which a smaller γ
can compensate.

2. A good choice of the batch size nbatch may depend on the hardware, e.g., for train-
ing on a graphical processing unit (GPU), a specific batch size may be processed
most efficiently.

3. Criteria for choosing learning rate and batch size are

� The training time required to achieve a certain loss. Faster is better.

� The minimum achieved loss. Lower is better.

� Whether or not the loss converges to a stable minimum.

A.5. Training, Validation, Testing

For several reasons (e.g., to detect overfitting), it is best practice to split your data set
into a training set, a validation set and a test set.

� A good starting point is the 80/10/10 ratio, i.e., to use 80% for training, 10% for
validation, and 10% for testing.

� Training set: parameter updates during training based on gradient descent are
exclusively done by using data from the training set.

� Validation set: for monitoring during training, the loss on the validation set is
periodically calculated and reported and/or recorded for later assessment. NB:
data from the validation set must not be used for training!

� Test set: the loss of the NN after training is calculated on the test set. The test loss
is the proclaimed performance of the NN. NB: the test loss must not be calculated
during training!
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A.6. Further Reading

More details on backpropagation in NNs can be found, e.g., in [1, Chapter 7]. A good
summary of training NNs in pytorch is provided in [2, Chapter 5]. In particular,

� [2, Section 5.5] discusses the implementation of backpropagation in pytorch.

� [2, Section 5.5.2] lists several advanced variations of SGD including the popular
torch.optim.Adam optimizer.

� [2, Section 5.5.3] discusses training and validation sets.

The last section of [3, Chapter 1] discussed training, validation, and test sets.
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A.7. Problems

Problem A.1. (Gradients) Consider the computational graph

f
x y

Calculate the gradient dy/dx for f being

1. The absolute value | · |.

2. The ReLU activation.

3. The logistic activation.

4. The tanh activation.

In the following, treat the message b as constant.

5. For the BCE loss on probabilities y = bce(b, p), calculate dy/dp.

6. For the BCE loss on LPRs y = bcelog(b, `), calculate dy/d`.

Problem A.2. (Gradient descent) Consider a single linear neuron as demapper for
BPSK in AWGN. Initialize the weight to w = 1, the bias to b = 0.1 and assume message
bit a = 1, channel input x = 1, channel output y = 0.5.

1. Calculate the NN output ` by forward propagation.

2. Calculate the gradient

d bcelog(a, `)

dw
(1) (A.28)

by back propagation.

3. Redo steps 1. and 2. using torch.tensor variables with requires grad=True
and calling the .backward() method. Compare the local gradients to the local
gradients you calculated by hand.
Hint: to access the gradient of intermediate variable z, call z.retain grad().

4. For learning rate γ = 0.01, calculate an update for w using gradient descent.

5. Use torch.optim.SGD with lr=0.01 to calculate an update for w and compare
to the update you calculated by hand in 4.

Problem A.3. (Stochastic Gradient Descent) In this problem, you train an equalizer
for a dataset x.txt (the transmitted symbols) and y.txt (the received distorted signal
oversampled with 2 samples per symbol.)

1. Preparation:
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� Split the data set into a training set, a validation set, and a test set using the
80/10/10 ratio.

� Use the optimizer torch.optim.SGD with lr=learning rate.

� Write a training loop with an outer loop over n epochs epochs and an inner
loop over batches of size batch size. Use torch.utils.data.DataLoader
for sampling batches.

� For each epoch, store the loss of the last batch and the loss on the validation
set.

� Exit the training loop after 10s.

2. Plot training loss and validation loss against the epoch index. Also, display in the
same plot the test loss against the last epoch index.

3. Search for the combination of learning rate and batch size that results in
the best validation loss (after 10s of training).

4. Do you achieve a better validation loss when using torch.optim.Adam as opti-
mizer?
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